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Lecture 2 – Mar 30, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Bayesian Network 
Representation

Readings: K&F 3.1, 3.2, 3.3, 3.4.1

Last time & today

Last time
Probability theory
Conditional independence
Conditional parameterization

Today
Naïve Bayes model
Definition of the Bayesian network (BN)
Independence properties encoded in BN graphs
From distributions to BN graphs

CSE 515 – Statistical Methods – Spring 2011 2



2

Conditional parameterization
S = SAT score, Val(S) = {s0,s1}
I = Intelligence, Val(I) = {i0,i1}
G = Grade, Val(G) = {g0,g1,g2}
Assume that G and S are independent given I

P(I,S,G) = 
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I S G P(I,S,G)

i0 s0 g0 0.425

i0 s0 g1 0.125

i1 S0 g2 0.01

: : : :

S

I s0 s1

i0 0.95 0.05

i1 0.2 0.8

I

i0 i1

0.7 0.3

P(S|I)P(I)P(I,S,G)

Joint parameterization Conditional parameterization

11 parameters

7 parameters

G

I g0 g1 g2

i0 0.75 0.05 0.2

i1 0.2 0.3 0.5

P(G|I)

I

S G

I S P(I,S)

i0 s0 0.665

i0 s1 0.035

i1 s0 0.06

i1 s1 0.24

3 parameters

P(I,S)

3 parameters

Naïve Bayes model
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Class variable C, Val(C) = {c1,…,ck}
Evidence variables X1,…,Xn

Naïve Bayes assumption: evidence variables 
are conditionally independent given C

Applications in medical diagnosis, text classification
Used as a classifier:

Given {x1,…,xn} on evidence variables X1,…,Xn, predict the value on C :

Problem: Double counting correlated evidence
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Bayesian network (informal)
Directed acyclic graph (DAG) G

Nodes represent random variables
Edges represent direct influences between random variables

Local probability models (conditional parameterization)
Conditional probability distributions (CPDs)

Here are the networks we have been discussing so far…

I

S

I

S G

C

X1 XnX2
…

Naïve BayesExample 2Example 1
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Bayesian network structure
Directed acyclic graph (DAG) G

Nodes X1,…,Xn represent random variables

G encodes the following set of independence 
assumptions (called, local independencies)

Xi is independent of its non-descendants given its parents
Formally: (Xi ⊥ NonDesc(Xi) | Pa(Xi)) 
Denoted by IL(G) A

B C

E

G

D FE ⊥ {A,C,D,F} | B

6
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The Student example
Course difficulty (D),             Val(D) = {easy, hard}
Intelligence (I) , Val (I) = {high, low}
Grade (G),                           Val (G) = {A, B, C}
Quality of the rec. letter (L),  Val(L) = {strong, weak}
SAT (S),                              Val (S) = {high, low}

Local independencies IL(Gstudent)
Graph Gstudent
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The Student Bayesian network
Joint distribution

P(I,D,G,S,L) =

IL(Gstudent)
D⊥ I
D⊥ S
G ⊥ S | D, I
L ⊥ I,D,S | G
S ⊥ D,G,L | I
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Independency mappings (I-Maps)
Let P be a distribution over X
Let I(P) be the independencies (X ⊥ Y | Z) in P
A Bayesian network structure G is an I-map 
(independency mapping) for P, if IL(G)⊆I(P)

I

S

I S P(I,S)

i0 s0 0.25

i0 s1 0.25

i1 s0 0.25

i1 s1 0.25

I

S

I S P(I,S)

i0 s0 0.4

i0 s1 0.3

i1 s0 0.2

i1 s1 0.1

I(P)={I⊥S} IL(G)={I⊥S} IL (G)=∅ I(P)=∅
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Factorization theorem

G is an I-Map of P 

The conditional independencies encoded in G imply 
factorization according to G.

G is an I-Map of P

Factorization according to G implies the associated 
conditional independencies.
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Factorization theorem
If G is an I-Map of P, then

Proof:
wlog. X1,…,Xn is an ordering consistent with G
By chain rule: 

From assumption: 

Since G is an I-Map (Xi; NonDesc(Xi)| Pa(Xi))∈I(P)
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Factorization implies I-Map
G is an I-Map of P

Proof:
Need to show (Xi; NonDesc(Xi)| Pa(Xi))∈I(P) or 

that P(Xi | NonDesc(Xi)) = P(Xi | Pa(Xi))
wlog. X1,…,Xn is an ordering consistent with G
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Bayesian network definition
A Bayesian network is a pair (G,P)

P factorizes over G
P is specified as set of CPDs associated with G’s nodes

Parameters
Joint distribution: 2n

Bayesian network (bounded in-degree k): n2k
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Bayesian network design
Variable considerations

Clarity test: can an omniscient being determine its value?
Hidden variables?
Irrelevant variables

Structure considerations
Causal order of variables
Which independencies (approximately) hold?

Probability considerations
Zero probabilities
Orders of magnitude
Relative values
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Independencies in a BN
G encodes local independencies

Xi is independent of its non-descendants given its parents
Formally: (Xi ⊥ NonDesc(Xi) | Pa(Xi)) 

Does G encode other independence assumptions that 
hold in every distribution P that factorizes over G?

Devise a procedure to find all independencies in G
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d-Separation (directed separation)
Goal: procedure that d-sep(X;Y | Z, G)

Return “true” iff Ind(X;Y | Z) follows from the local 
independencies in G, IL(G).

Strategy: since influence must “flow” along paths in 
G, consider reasoning patterns between X, Y, and 
Z, in various structures in G

Active path: creates dependencies between nodes
Inactive path: cannot create dependencies
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Direct connection
X and Y directly connected in G no Z exists for 
which Ind(X;Y | Z)

Example: deterministic function

X

Y
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Indirect connection

Z

Y

X

Blocked

Z

X

Y

Blocked

YX

Z

Blocked

YX

Z
Blocked

Z

Y
Case 1:

Indirect causal effect

X
Active

Z

X
Case 2:

Indirect evidential effect

Y
Active

YX
Case 3:

Common cause

Z

Active

YX

Z
Case 4:

Common effect

Active

X can influence Y via Z iff Z is not observed.

v-structure

18
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The general case
Let G be a Bayesian network structure
Let X1↔…↔Xn be a trail in G
Let E be a subset of evidence nodes in G

The trail X1↔…↔Xn is active given evidence E if:
ALL the three-node networks along the trail is active.

For every V-structure Xi-1→Xi←Xi+1, Xi or one of its 
descendants is observed
No other nodes along the trail is in E
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d-Separation
X and Y are d-separated in G given Z, denoted
d-sepG(X;Y | Z) if there is no active trail between 
any node X∈X and any node Y∈Y in G 

I(G) = {(X⊥Y|Z) : d-sepG(X;Y | Z)}

CSE 515 – Statistical Methods – Spring 2011 20



11

Examples

D

E

A

d-sep(B,C|D)=no

B

C

D

E

A B

C

D

E

A

d-sep(B,C)=yes

B

C X D

E

A

d-sep(B,C|A,D)=yes

B

C
X

Are B and C d-separated?

d-Separation: soundness
Theorem:

Defer proof

G is an I-map of P

d-sepG(X;Y | Z) = yes
P satisfies Ind(X;Y | Z)
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d-Separation: completeness
Theorem:

Proof outline:
Construct distribution P where independence does not hold
Since there is no d-sep, there is an active path
For each interaction in the path, correlate the variables 
through the distribution in the CPDs
Set all other CPDs to uniform, ensuring that influence flows 
only in a single path and cannot be cancelled out
Detailed distribution construction quite involved

d-sepG(X;Y | Z) = no

There exists P such that 

G is an I-map of P

P does not satisfy
Ind(X;Y | Z)

CSE 515 – Statistical Methods – Spring 2011 23

Algorithm for d-separation
Goal: answer whether d-sep(X;Y | Z, G)

Enumerate all possible trails between X and Y?  NO

Algorithm:
Mark all nodes in Z or that have descendants in Z
BFS traverse G from X
Stop traversal at blocked nodes:

Node that is in the middle of a v-structure and not in marked set
Not such a node but is in Z

If we reach any node in Y then there is an active path and 
thus d-sep(X;Y | Z, G) does not hold

Theorem: algorithm returns all nodes reachable from 
X via trails that are active in G
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I-equivalence between graphs
I(G) describe all conditional independencies in G
Different Bayesian networks can have same Ind.

Z

YX Z

Y

X

Ind(X;Y | Z)

Z

Y

X

Ind(X;Y | Z) Ind(X;Y | Z)

Z

YX

Ind(X;Y)

Equivalence class I Equivalence class II

Two BN graphs G1 and G2 are I-equivalent if I(G1) = I(G2)
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I-equivalence between graphs

If P factorizes over a graph in an I-equivalence class
P factorizes over all other graphs in the same class
P cannot distinguish one I-equivalent graph from another

Implications for structure learning
We cannot find the “correct” structure from within the same 
equivalent class. -> will revisit later.

Test for I-equivalence: d-separation
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Test for I-equivalence
Necessary condition: same graph skeleton

Otherwise, can find active path in one graph but not other
But, not sufficient: v-structures

Sufficient condition: same skeleton and v-structures
But, not necessary: complete graphs (no independence)

Define X Z Y as immoral if X, Y are not directly 
connected

Necessary and Sufficient: same skeleton and immoral set of 
v-structures
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Constructing graphs for P
Can we construct a graph for a distribution P?

Any graph which is an I-map for P
But, this is not so useful: complete graphs

A DAG is complete if adding an edge creates cycles
Complete graphs imply no independence assumptions
Thus, they are I-maps of any distribution
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Minimal I-Maps
A graph G is a minimal I-Map for P if:

G is an I-map for P
Removing any edge from G renders it not an I-map

Example: if                is a minimal I-map for P,

Then:             ,              ,               ,                is not I-maps.

X

W

Y

Z

X

W

Y

Z

X

W

Y

Z

X

W

Y

Z

X

W

Y

Z
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BayesNet definition revisited
A Bayesian network is a pair (G,P)

P factorizes over G
P is specified as set of CPDs associated with G’s nodes
Additional requirement: G is a minimal I-map for P
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Constructing minimal I-Maps
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Reverse factorization theorem
G is an I-Map of P

Algorithm for constructing a minimal I-Map
Fix an ordering of nodes X1,…,Xn

Select parents of Xi as minimal subset of X1,…,Xi-1,
such that Ind(Xi ; X1,…Xi-1 – Pa(Xi) | Pa(Xi))

(Outline of) Proof of minimal I-map
I-map since the factorization above holds by construction
Minimal since by construction, removing one edge destroys 
the factorization
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Non-uniqueness of minimal I-Map
Applying the same I-Map construction process with 
different orders can lead to different structures

D

E

A B

C

Assume: I(G) = I(P)

Order: E,C,D,A,B
D

E

A B

C

Different independence assumptions (different 
skeletons, e.g., Ind(A;B) holds on left)
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Choosing order
Drastic effects on complexity of minimal I-Map graph
Heuristic: use causal order
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Perfect maps
G is a perfect map (P-Map) for P if I(P)=I(G)

Does every distribution have a P-Map?
No: independencies may be encoded in CPD Ind(X;Y|Z=1)
No: some structures cannot be represented in a BN

Independencies in P: Ind(A;D | B,C), and Ind(B;C | A,D)

D

A

BC

Ind(B;C | A,D) does not hold

DA

BC

Ind(A,D) also holds
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Finding a perfect map
If P has a P-Map, can we find it?

Not uniquely, since I-equivalent graphs are 
indistinguishable
Thus, represent I-equivalent graphs and return it

Recall I-Equivalence
Necessary and Sufficient: same skeleton and immoral 
set of v-structures

Finding P-Maps
Step I: Find skeleton
Step II: Find immoral set of v-structures
Step III: Direct constrained edges
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Step I: Identifying the skeleton
Query P for Ind(X;Y | Z)

If there is no Z for which Ind(X;Y | Z) holds,
then X Y or Y X in G*

Proof: Assume no Z exists, and G* does not have X Y or 
Y X
Then, can find a set Z such that the path from X to Y is 
blocked
Then, G* implies Ind(X;Y | Z) and since G* is a P-Map
Contradiction

Algorithm: For each pair X,Y query all Z
X–Y is in skeleton if no Z is found
If graph in-degree bounded by d running time 
O(n2d+2)

Since if no direct edge exists, Ind(X;Y | Pa(X), Pa(Y))

CSE 515 – Statistical Methods – Spring 2011 36



19

Step II: Identifying immoralities
Find all X–Z–Y triplets where X–Y is not in skeleton

X Z Y is a potential immorality
If there is no W such that Z is in W and Ind(X;Y | W),
then X Z Y is an immorality

Proof: Assume no W exists but X–Z–Y is not an immorality
Then, either X Z Y or X Z Y or X Z Y exists
But then, we can block X–Z–Y by Z
Then, since X and Y are not connected, can find W that includes 
Z such that Ind(X;Y | W)
Contradiction

Algorithm: For each pair X,Y query candidate triplets
X Z Y if no W is found that contains Z and Ind(X;Y | W)
If graph in-degree bounded by d running time O(n2d+3)

If W exists, Ind(X;Y|W), and X Z Y not immoral, then Z∈W
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Step III: Direct constrained edges
If skeleton has k undirected edges, at most 2k graphs
Given skeleton and immoralities, are there additional 
constraints on the edges?

D

A B

C

Original BN

D

A B

C

I-equivalence

D

A B

C

Not equivalent

Equivalence class is a singleton
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Step III: Direct constrained edges
Local constraints for directing edges 

A

CB

A

CB

A

CB

A

CB

D

A

CB

D

A

CB

39

Step III: Direct constrained edges
Algorithm: iteratively direct edges by 3 local rules

Guaranteed to converge since each step directs an 
edge

Algorithm is sound and complete
Proof strategy for completeness: show that for any 
single edge that is undirected, we can find two graphs, 
one for each possible direction
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Summary
Local independencies IL(G)– basic BN independencies
d-separation – all independencies via graph structure
G is an I-Map of P if and only if P factorizes over G
I-equivalence – graphs with identical independencies
Minimal I-Map

All distributions have I-Maps (sometimes more than one)
Minimal I-Map does not capture all independencies in P

Perfect map – not every distribution P has one

Reading assignment: K&F 3.1, 3.2, 3.3, 3.4
HW1 will be handed out next Monday!

Acknowledgement

These lecture notes were generated based on the 
slides from Prof Eran Segal.

CSE 515 – Statistical Methods – Spring 2011 42


