Readings: K&F 3.1, 3.2, 3.3,3.4.1

Bayesian Network
‘ Representation

Lecture 2 — Mar 30, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Last time & today

= Last time
= Probability theory
= Conditional independence
= Conditional parameterization

= Today
= Naive Bayes model
= Definition of the Bayesian network (BN)
= Independence properties encoded in BN graphs
= From distributions to BN graphs
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Conditional parameterization

S = SAT score, Val(S) = {s°,s1}
I = Intelligence, Val(l) = {i%,il}
G = Grade, Val(G) = {g°9',9%}
Assume that G and S are independent given |

P(1,5,G) = PPEITIPIAIT,S) = pIDPISITIP(&IT)

Joint parameterization Conditional parameterization

P(1,S)G) P(D P(S|I) P(G|I)
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3 parametémarameters
3 parameters
11 parameters

CSE 515 — Statistical Methods — Spring 2011 3

Naive Bayes model

= Class variable C, Val(C) = {c,,...,C,}
= Evidence variables X;,...,X,

= Naive Bayes assumption: evidence variables
are conditionally independent given C (%1%t ¢) ¥}

P(C, Xy X)) = POPIL) POGICX)  PURMA CXu=Xas)= PLOITEPLXEAC)

= Applications in medical diagnosis, text classification

= Used as a classifier:
= Given {xy,...,X,} on evidence variables X,,...,X,, predict the value on C :
PC=C X X) _ PLOK  PLCC) fpelCecy
P(C=Cy X, X,) PG PR *(PLAC6) 4]

= Problem: Double counting correlated evidence el Loy Shere

QsSwnpAm
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Bayesian network (informal)

= Directed acyclic graph (DAG) G
= Nodes represent random variables
= Edges represent direct influences between random variables
= Local probability models (conditional parameterization)
= Conditional probability distributions (CPDs)

= Here are the networks we have been discussing so far...

CPDs
pen) per)
pisiT) pisiI)
p (&IT)
Example 1 Example 2 Naive Bayes
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Bayesian network structure

= Directed acyclic graph (DAG) G
= Nodes Xj,...,X, represent random variables

= G encodes the following set of independence
assumptions (called, local independencies)
= X; is independent of its non-descendants given its parents
= Formally: (X; L NonDesc(X)) | Pa(X;))
= Denoted by I, (G)

E_L{ACDF}|B




The Student example

= Course difficulty (D), Val(D) = {easy, hard}
= Intelligence (I) , Val (1) = {high, low}

= Grade (G), Val (G) = {A, B, C}

= Quality of the rec. letter (L), Val(L) = {strong, weak}
= SAT (9), Val (S) = {high, low}

Mstudent

Local independencies |, (Gqygent)
X LND0R) | RG]

pLI, VLS,
®IS\I.0,
LLTos|&,
SLDGLIT
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The Student Bayesian network

= Joint distribution SGLL  LITDSI&

= P(I,D,G,S,L) = pcl)gwm)pcalw)pcslx,&g) PULIXR G 8
pLd) p(siz) peL &)

E < T PUX| Paf)
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Independency mappings (I-Maps)

= Let P be a distribution over X
= Let I(P) be the independencies (X LY | Z2)inP

= A Bayesian network structure G is an I-map
(independency mapping) for P, if 1 (G)cI(P)

1 s | P@,s) 1 s | P.,S)
i s0 0.25 i0 s0 0.4

i st 0.25 i st 0.3
it s0 0.25 it s0 0.2
it st 0.25 it st 0.1
1.(G)={ILS} [I(P)={ILS} I (G)=Y I(P)=0
Lie) S1p) TICTep) holds
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Factorization theorem
“P factnorizes over G”
= Gisan I-Map of P 2 P(Xl""7xn):HP(xi | Pa(X;))

i=1

= The conditional independencies encoded in G imply
factorization according to G.

n P(Xl,...,Xn):ﬁP(Xi |Pa(X;)) > G is an I-Map of P

i=1

= Factorization according to G implies the associated
conditional independencies.
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Factorization theorem

= From assumption: Pa(X;) c{X, ..., X, .}
U={X, ..., X, }—Pa(X;) < NonDesc(X;)

= Since G is an I-Map = (X;; NonDesc(X;)| Pa(X;))eI(P)
§ AU ( Patil
2 pOKAV, Pali)) = LA AL )
P(xi | Xires Xi—l) = P(Xi | Pa(xi))

11

Factorization implies I-Map

i=1

Proof:

= Need to show (X;; NonDesc(X;)]| Pa(X)))el(P) or
that P(X; | NonDesc(X;)) = P(X; | Pa(X;))

= wlog. X;,...,X,, is an ordering consistent with G

P(X;| NonDesc(X,)) = PED)ENON:SESES((;E');;))

r'_[P(xk |Pa(X,))

TTP(X, 1Pa(X,))
~P(X, |Pa(X,))

12




Bayesian network definition

= A Bayesian network is a pair (G,P)
= P factorizes over G
= P is specified as set of CPDs associated with G's nodes

= Parameters
= Joint distribution: 2"
= Bayesian network (bounded in-degree k): n2k
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Bayesian network design

= Variable considerations
= Clarity test: can an omniscient being determine its value?
= Hidden variables?
= lrrelevant variables
= Structure considerations
= Causal order of variables
= Which independencies (approximately) hold?
= Probability considerations
= Zero probabilities
= Orders of magnitude
= Relative values
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Independencies in a BN

» G encodes local independencies
= X; is independent of its non-descendants given its parents
= Formally: (X; L NonDesc(X)) | Pa(X;))

Does G encode other independence assumptions that
hold in every distribution P that factorizes over G?

Devise a procedure to find all independencies in G
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d-Separation (directed separation)

= Goal: procedure that d-sep(X;Y | Z, G)

= Return “true” iff Ind(X;Y | Z) follows from the local
independencies in G, 1, (G).

= Strategy: since influence must “flow” along paths in
G, consider reasoning patterns between X, Y, and
Z, in various structures in G

= Active path: creates dependencies between nodes
= |nactive path: cannot create dependencies
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Direct connection

= X and Y directly connected in G - no Z exists for
which Ind(X;Y | 2)
= Example: deterministic function
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Indirect cynmontion

X can influence Y via Z iff Z is not observed.

Active Active v-structure
Active
Active
Case 3:
Case 1: Case 2: Common cause Case 4:
rndirect causal effect Indirect evidential effect Common effect

Blocked
N “IW/B‘W s Blocked

Blocked Blocked 18




The general case

= Let G be a Bayesian network structure
= Let X;>...<oX, be a trail in G
= Let E be a subset of evidence nodes in G

The trail X;<>...<>X,, is active given evidence E if:

= ALL the three-node networks along the trail is active.

= For every V-structure X ;—X<X,;, X; or one of its
descendants is observed

= No other nodes along the trail is in E
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d-Separation

= X and Y are d-separated in G given Z, denoted
d-seps(X;Y | 2) if there is no active trail between
any node XeX and any node YeY in G

= 1(G) = {(XLY]2) : d-seps(X:Y | 2)}
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Examp|es Are B and C d-separated?

d-sep(B,C)=yes d-sep(B,C|D)=no  d-sep(B,C|A,D)=yes

d-Separation: soundness

s Theorem:

®= Gisan I-map of P

= d-sepg(X;Y | Z) = yes

= P satisfies Ind(X;Y | 2)

» Defer proof
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d-Separation: completeness

s Theorem:

There exists P such that

= Gisan I-map of P

= d-seps(X;Y | Z) = no

= P does not satisfy
Ind(X;Y | 2)

= Proof outline:
= Construct distribution P where independence does not hold
= Since there is no d-sep, there is an active path

= For each interaction in the path, correlate the variables
through the distribution in the CPDs

= Set all other CPDs to uniform, ensuring that influence flows
only in a single path and cannot be cancelled out

= Detailed distribution construction quite involved
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Algorithm for d-separation

= Goal: answer whether d-sep(X;Y | Z, G)
= Enumerate all possible trails between X and Y? NO

= Algorithm:
= Mark all nodes in Z or that have descendants in Z
= BFS traverse G from X prkvfiee Seaks

= Stop traversal at blocked nodes:
= Node that is in the middle of a v-structure and not in marked set
= Not such a node but is in Z

= If we reach any node in Y then there is an active path and
thus d-sep(X;Y | Z, G) does not hold

» Theorem: algorithm returns all nodes reachable from
X via trails that are active in G
CSE 515 — Statistical Methods — Spring 2011 24




|-equivalence between graphs

= |(G) describe all conditional independencies in G
= Different Bayesian networks can have same Ind.

INd(X;Y |2)  Ind(X;Y | 2) Ind(X;Y | 2) Ind(X:Y)

Equivalence class | Equivalence class I1

Two BN graphs G, and G, are I-equivalent if 1(G;) = 1(G,)
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|-equivalence between graphs

= If P factorizes over a graph in an I-equivalence class
= P factorizes over all other graphs in the same class
= P cannot distinguish one I-equivalent graph from another

= Implications for structure learning

= We cannot find the “correct” structure from within the same
equivalent class. -> will revisit later.

= Test for I-equivalence: d-separation
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Test for I-equivalence

= Necessary condition: same graph skeleton
= Otherwise, can find active path in one graph but not other
= But, not sufficient: v-structures

= Sufficient condition: same skeleton and v-structures
= But, not necessary: complete graphs (no independence)

=7

= Define X>Z<Y as if X, Y are not directly

connected

= Necessary and Sufficient: same skeleton and immoral set of
v-structures
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Constructing graphs for P

= Can we construct a graph for a distribution P?
= Any graph which is an I-map for P

= But, this is not so useful: complete graphs
= A DAG is complete if adding an edge creates cycles
= Complete graphs imply no independence assumptions
= Thus, they are I-maps of any distribution
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Minimal I-Maps

= A graph G is a minimal I-Map for P if:
= Gisan I-map for P
= Removing any edge from G renders it not an I-map

= Example: if ’“ is a minimal I-map for P,

IS not I-maps.
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BayesNet definition revisited

= A Bayesian network is a pair (G,P)
= P factorizes over G
= P is specified as set of CPDs associated with G's nodes

= Additional requirement: G is a-map for P
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Constructing minimal 1-Maps

= Reverse factorinzation theorem
= P(X,... X)) =]]P(X [Pa(X;)) - Gisan I-Map of P
i=1

= Algorithm for constructing a minimal 1-Map
= Fix an ordering of nodes X;,...,X,

= Select parents of X; as minimal subset of X,,...,X,,,
such that Ind(X; ; X,,...X;,; — Pa(X;) | Pa(X))

= (Outline of) Proof of minimal I-map
= I-map since the factorization above holds by construction

= Minimal since by construction, removing one edge destroys
the factorization
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Non-uniqueness of minimal I-Map

= Applying the same I-Map construction process with
different orders can lead to different structures

Assume: I(G) = I(P)

G @ Order: E,C,D,A,B

Different independence assumptions (different
skeletons, e.g., Ind(A;B) holds on left)
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Choosing order

= Drastic effects on complexity of minimal 1-Map graph
= Heuristic: use causal order
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Perfect maps
= G is a perfect map (P-Map) for P if I(P)=I1(G)

= Does every distribution have a P-Map?
= No: independencies may be encoded in CPD Ind(X;Y]|Z=1)

= No: some structures cannot be represented in a BN
= Independencies in P: Ind(A;D | B,C), and Ind(B;C | A,D)

Ind(B;C | A,D) does not hold In also holds
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Finding a perfect map

= If P has a P-Map, can we find it?

= Not uniquely, since I-equivalent graphs are
indistinguishable
= Thus, represent I-equivalent graphs and return it

= Recall I-Equivalence
= Necessary and Sufficient: same skeleton and immoral
set of v-structures

= Finding P-Maps
= Step I: Find skeleton
= Step Il: Find immoral set of v-structures
= Step Il1: Direct constrained edges
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Step I: Identifying the skeleton

= Query P for Ind(X;Y | 2)
= If there is no Z for which Ind(X;Y | Z) holds,
then XY or Y=>X in G*

= Proof: Assume no Z exists, and G* does not have X->Y or
Y>X

= Then, can find a set Z such that the path from X to Y is
blocked

= Then, G* implies Ind(X;Y | Z) and since G* is a P-Map

= Contradiction

= Algorithm: For each pair X,Y query all Z
= X=Y is in skeleton if no Z is found
= If graph in-degree bounded by d = running time
O(n2d+2)
= Since if no direct edge exists, Ind(X;Y | Pa(X), Pa(Y))
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Step Il: Identifying immoralities

= Find all X—Z-Y triplets where X-Y is not in skeleton
= X2>Z<&Y is a potential immorality
» If there is no W such that Z is in W and Ind(X;Y | W),
then X->Z<Y is an immorality
= Proof: Assume no W exists but X—Z-Y is not an immorality
= Then, either X>Z->Y or X&Z&Y or X&Z->Y exists
« But then, we can block X—Z-Y by Z

= Then, since X and Y are not connected, can find W that includes
Z such that Ind(X;Y | W)

= Contradiction
= Algorithm: For each pair X,Y query candidate triplets
s X2Z<&Y if no W is found that contains Z and Ind(X;Y | W)

= If graph in-degree bounded by d = running time O(n2d+3)
« If W exists, Ind(X;Y|W), and X>Z<Y not immoral, then ZeW
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Step Ill: Direct constrained edges

= If skeleton has k undirected edges, at most 2 graphs

= Given skeleton and immoralities, are there additional
constraints on the edges?

A B O B & 6
© © ©

Original BN I-equivalence Not equivalent

Equivalence class is a singleton
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Step Ill: Direct constrained edges

= Local constraints for directing edges

39

Step Ill: Direct constrained edges

= Algorithm: iteratively direct edges by 3 local rules

= Guaranteed to converge since each step directs an
edge

= Algorithm is sound and complete

= Proof strategy for completeness: show that for any
single edge that is undirected, we can find two graphs,
one for each possible direction
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Summary

= Local independencies I (G)— basic BN independencies
= d-separation — all independencies via graph structure
= Gis an I-Map of P if and only if P factorizes over G
= |-equivalence — graphs with identical independencies
= Minimal I-Map

= All distributions have I-Maps (sometimes more than one)

= Minimal I-Map does not capture all independencies in P

= Perfect map — not every distribution P has one

= Reading assignment: K&F 3.1, 3.2, 3.3, 3.4
= HW1 will be handed out next Monday!
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