Bayesian Network Representation

Lecture 2 - Mar 30, 2011

CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Last time \& today

- Last time
- Probability theory
- Conditional independence
- Conditional parameterization
- Today
- Naïve Bayes model
- Definition of the Bayesian network (BN)
- Independence properties encoded in BN graphs
- From distributions to BN graphs

Conditional parameterization

－ $\mathrm{S}=\mathrm{SAT}$ score， $\operatorname{Val}(\mathrm{S})=\left\{\mathrm{s}^{0}, \mathrm{~s}^{1}\right\}$
－ $\mathrm{I}=$ Intelligence， $\operatorname{Val}(\mathrm{I})=\left\{\mathrm{i}^{0}, \mathrm{i}^{1}\right\}$
－$G=\operatorname{Grade}, \operatorname{Val}(G)=\left\{g^{0}, g^{1}, g^{2}\right\}$
－Assume that G and S are independent given I

－$P(I, S, G)=P(I) p(S I I) p(G I I, S)=p(I) p(S I I) p(G I I)$

J oint parameterization

$\mathbf{P}(\mathbf{I}, \mathrm{S}) \mathrm{G})$			
1	5	P¢ $1, \mathrm{~S}$ ）	$\mathbf{P}(\mathbf{I}, \mathbf{S}, \mathrm{G})$
	so	$0{ }_{9} 665$	Q． 425
io ${ }_{\text {i }}$	$\begin{aligned} & s^{1} \\ & s_{0}^{0} \\ & 5^{0} \end{aligned}$	$\left\|\begin{array}{c} 9 \\ 0.035 \\ 0^{1} \\ 0^{1} \\ 06 \end{array}\right\|$	¢． 125
	：	：	：

Conditional parameterization

Naïve Bayes model

－Class variable C，Val（C）$=\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{k}\right\}$
－Evidence variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
－Naïve Bayes assumption：evidence variables
are conditionally independent given C（ $\left.\mathrm{x}_{\mathrm{L}} \mathrm{L}_{\boldsymbol{j}} \mid \mathrm{C}\right) ~ i \nLeftarrow$ \downarrow

－Applications in medical diagnosis，text classification
－Used as a classifier：
－Given $\left\{x_{1}, \ldots, \mathrm{X}_{n}\right\}$ on evidence variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ ，predict the value on C ：
$\frac{P\left(C=c_{1} \mid x_{1}, \ldots, x_{n}\right)}{P\left(C=c_{2} \mid x_{1}, \ldots, x_{n}\right)}=\frac{p\left(c_{1}, x_{1}, \cdots, x_{n}\right)}{p\left(c_{2}, x_{1}, \cdots, x_{n}\right)}=\frac{p\left(C=c_{1}\right)}{p\left(c_{1} C_{2}\right)} \prod\left\{\frac{p\left(x_{1} \mid C=c_{1}\right)}{p\left(x_{2} l c_{2}\right)}\right\}$
－Problem：Double counting correlated evidence

Bayesian network (informal)

- Directed acyclic graph (DAG) G
- Nodes represent random variables
- Edges represent direct influences between random variables
- Local probability models (conditional parameterization)
- Conditional probability distributions (CPDs)
- Here are the networks we have been discussing so far...

Example 1

Example 2

Naïve Bayes

Bayesian network structure

- Directed acyclic graph (DAG) G
- Nodes X_{1}, \ldots, X_{n} represent random variables
- G encodes the following set of independence assumptions (called, local independencies)
- X_{i} is independent of its non-descendants given its parents
- Formally: $\left(X_{i} \perp \operatorname{NonDesc}\left(X_{i}\right) \mid \operatorname{Pa}\left(X_{i}\right)\right)$
- Denoted by $I_{L}(G)$
$E \perp\{A, C, D, F\} \mid B$ \Leftarrow

G

Independency mappings (I-Maps)

- Let P be a distribution over X
- Let $I(P)$ be the independencies $(X \perp Y \mid Z)$ in P
- A Bayesian network structure G is an I-map (independency mapping) for P, if $I_{L}(G) \subseteq I(P)$

(1)	1	s	P(1,	
	io	${ }^{\circ}$	0.25	
	10	s^{1}	${ }^{0.25}$	
(S)	ir	si	0.25	

$I_{L}(G)=\{I \perp S\} \quad I(P)=\{I \perp S\}$ $I(G) \subseteq I(p)$

$I(P)=\varnothing$
$I(G) \subseteq I(p)$ holds

Factorization theorem

"P factorizes over G "

- G is an I-Map of $\mathrm{P} \rightarrow P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right)$
- The conditional independencies encoded in G imply factorization according to G.
- $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right) \rightarrow \mathrm{G}$ is an I-Map of P
- Factorization according to G implies the associated conditional independencies.

Factorization theorem

- If G is an I-Map of P , then $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right)$

Proof:

- wlog. X_{1}, \ldots, X_{n} is an ordering consistent with G
- By chain rule: $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$
- From assumption: $\operatorname{Pa}\left(X_{i}\right) \subseteq\left\{X_{1, \ldots}, X_{i-1}\right\}$

$$
U=\left\{X_{1, \ldots}, \ldots, X_{i-1}\right\}-\operatorname{Pa}\left(X_{i}\right) \subseteq \operatorname{NonDesc}\left(X_{i}\right)
$$

- Since G is an I-Map $\rightarrow\left(\mathrm{X}_{\mathrm{i}} ; \operatorname{NonDesc}\left(\mathrm{X}_{\mathrm{i}}\right) \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right) \in \mathrm{I}(\mathrm{P})$ $\left\{x_{2} \pm \mathrm{U}_{1}\left(\mathrm{~Pa}_{\mathrm{a}}\left(\mathrm{K}_{2}\right)\right\}\right.$
$=p\left(x_{2} \mid \|_{1} P a\left(x_{2}\right)\right)=p\left(x_{1} \mid \operatorname{Pa}\left(x_{2}\right)\right)$

$$
P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

Factorization implies I-Map

- $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right) \rightarrow \mathrm{G}$ is an I-Map of P

Proof:

- Need to show ($\left.\mathrm{X}_{\mathrm{i}} ; \operatorname{NonDesc}\left(\mathrm{X}_{\mathrm{i}}\right) \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right) \in \mathrm{l}(\mathrm{P})$ or that $P\left(X_{i} \mid \operatorname{NonDesc}\left(X_{i}\right)\right)=P\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right)$
- wlog. X_{1}, \ldots, X_{n} is an ordering consistent with G

$$
\begin{aligned}
P\left(X_{i} \mid \operatorname{NonDesc}\left(X_{i}\right)\right) & =\frac{P\left(X_{i}, \operatorname{NonDesc}\left(X_{i}\right)\right)}{P\left(\operatorname{NonDesc}\left(X_{i}\right)\right)} \\
& =\frac{\prod_{k=1}^{i} P\left(X_{k} \mid \operatorname{Pa}\left(X_{k}\right)\right)}{i-1} P\left(X_{k} \mid \operatorname{Pa}\left(X_{k}\right)\right) \\
& =P\left(X_{i} \mid P a\left(X_{i}\right)\right)
\end{aligned}
$$

Bayesian network definition

- A Bayesian network is a pair (G,P)
- P factorizes over G
- P is specified as set of CPDs associated with G's nodes
- Parameters
- J oint distribution: 2^{n}
- Bayesian network (bounded in-degree k): n2 ${ }^{\text {k }}$

Bayesian network design

- Variable considerations
- Clarity test: can an omniscient being determine its value?
- Hidden variables?
- Irrelevant variables
- Structure considerations
- Causal order of variables
- Which independencies (approximately) hold?
- Probability considerations
- Zero probabilities
- Orders of magnitude
- Relative values

Independencies in a BN

- G encodes local independencies
- X_{i} is independent of its non-descendants given its parents
- Formally: $\left(X_{i} \perp \operatorname{NonDesc}\left(X_{i}\right) \mid \operatorname{Pa}\left(X_{i}\right)\right)$

Does G encode other independence assumptions that hold in every distribution P that factorizes over G ?

】

Devise a procedure to find all independencies in G

d-Separation (directed separation)

- Goal: procedure that $d-\operatorname{sep}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z}, G)$
- Return "true" iff Ind $(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$ follows from the local independencies in $G, I_{L}(G)$.
- Strategy: since influence must "flow" along paths in G, consider reasoning patterns between \mathbf{X}, \mathbf{Y}, and \mathbf{Z}, in various structures in G
- Active path: creates dependencies between nodes
- Inactive path: cannot create dependencies

Direct connection

- X and \mathbf{Y} directly connected in $G \rightarrow$ no Z exists for which Ind($\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z}$)
- Example: deterministic function

I ndirect $C \hat{X}$ can influence \bar{Y} via Z iff Z is not observed.
Active

The general case

- Let G be a Bayesian network structure
- Let $X_{1} \leftrightarrow \ldots \leftrightarrow X_{n}$ be a trail in G
- Let \mathbf{E} be a subset of evidence nodes in G

The trail $X_{1} \leftrightarrow \ldots \leftrightarrow X_{n}$ is active given evidence E if:

- ALL the three-node networks along the trail is active.
- For every V -structure $\mathrm{X}_{\mathrm{i}-1} \rightarrow \mathrm{X}_{\mathrm{i}} \leftarrow \mathrm{X}_{\mathrm{i}+1}, \mathrm{X}_{\mathrm{i}}$ or one of its descendants is observed
- No other nodes along the trail is in \mathbf{E}

d-Separation

- \mathbf{X} and \mathbf{Y} are d-separated in G given \mathbf{Z}, denoted $d-\operatorname{sep}_{\mathbf{G}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$ if there is no active trail between any node $\mathbf{X} \in \mathbf{X}$ and any node $\mathbf{Y} \in \mathbf{Y}$ in G
- $\mathrm{I}(\mathrm{G})=\left\{(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}): d-\operatorname{sep}_{\mathrm{G}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})\right\}$

d-Separation: soundness

- Theorem:
- G is an I-map of P
- P satisfies $\operatorname{Ind}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$
- d-sep ${ }_{G}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})=$ yes
- Defer proof

d-Separation: completeness

- Theorem:

There exists P such that

- G is an I-map of P
- $d-\operatorname{sep}_{\mathrm{G}}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})=$ no
- P does not satisfy Ind($\mathbf{X ; Y} \mathbf{Y} \mid \mathbf{Z}$)
- Proof outline:
- Construct distribution P where independence does not hold
- Since there is no d-sep, there is an active path
- For each interaction in the path, correlate the variables through the distribution in the CPDs
- Set all other CPDs to uniform, ensuring that influence flows only in a single path and cannot be cancelled out
- Detailed distribution construction quite involved

Algorithm for d-separation

- Goal: answer whether d-sep($\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z}, \mathrm{G})$
- Enumerate all possible trails between X and Y ? NO
- Algorithm:
- Mark all nodes in \mathbf{Z} or that have descendants in \mathbf{Z}
- BFS traverse G from \mathbf{X} brelu first searh
- Stop traversal at blocked nodes:
- Node that is in the middle of a v-structure and not in marked set
- Not such a node but is in \mathbf{Z}
- If we reach any node in \mathbf{Y} then there is an active path and thus d-sep $(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z}, G)$ does not hold
- Theorem: algorithm returns all nodes reachable from \mathbf{X} via trails that are active in G

I-equivalence between graphs

- I(G) describe all conditional independencies in G
- Different Bayesian networks can have same Ind.

Equivalence class I

Equivalence class II

Two BN graphs G_{1} and G_{2} are I-equivalent if $\mathrm{I}\left(\mathrm{G}_{1}\right)=\mathrm{I}\left(\mathrm{G}_{2}\right)$

I-equivalence between graphs

- If P factorizes over a graph in an I-equivalence class
- P factorizes over all other graphs in the same class
- P cannot distinguish one I-equivalent graph from another
- Implications for structure learning
- We cannot find the "correct" structure from within the same equivalent class. -> will revisit later.
- Test for I-equivalence: d-separation

Test for I-equivalence

- Necessary condition: same graph skeleton
- Otherwise, can find active path in one graph but not other
- But, not sufficient: v-structures
- Sufficient condition: same skeleton and v-structures
- But, not necessary: complete graphs (no independence)
- Define $X \rightarrow Z \leftarrow Y$ as immoral if X, Y are not directly connected
- Necessary and Sufficient: same skeleton and immoral set of v-structures

Constructing graphs for P

- Can we construct a graph for a distribution P?
- Any graph which is an I-map for P
- But, this is not so useful: complete graphs
- A DAG is complete if adding an edge creates cycles
- Complete graphs imply no independence assumptions
- Thus, they are I-maps of any distribution

Minimal I-Maps

- A graph G is a minimal I -Map for P if:
- G is an I-map for P
- Removing any edge from G renders it not an I-map

Then:

BayesNet definition revisited

- A Bayesian network is a pair (G,P)
- P factorizes over G
- P is specified as set of CPD s associated with G's nodes
- Additional requirement: G is a ninimal-map for P

Constructing minimal I-Maps

- Reverse factorization theorem
- $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right) \rightarrow \mathrm{G}$ is an I-Map of P
- Algorithm for constructing a minimal I-Map
- Fix an ordering of nodes X_{1}, \ldots, X_{n}
- Select parents of X_{i} as minimal subset of X_{1}, \ldots, X_{i-1}, such that $\operatorname{Ind}\left(X_{i} ; X_{1}, \ldots X_{i-1}-\mathrm{Pa}\left(X_{i}\right) \mid \mathrm{Pa}\left(X_{i}\right)\right)$
- (Outline of) Proof of minimal I-map
- I-map since the factorization above holds by construction
- Minimal since by construction, removing one edge destroys the factorization

Non-uniqueness of minimal I-Map

- Applying the same I-Map construction process with different orders can lead to different structures

Assume: $I(G)=I(P)$

Choosing order

- Drastic effects on complexity of minimal I-Map graph
- Heuristic: use causal order

Perfect maps

- G is a perfect map (P-Map) for P if $I(P)=I(G)$
- Does every distribution have a P-Map?
- No: independencies may be encoded in CPD Ind $(X ; Y \mid Z=1)$
- No: some structures cannot be represented in a BN
- Independencies in $P: \operatorname{Ind}(A ; D \mid B, C)$, and $\operatorname{Ind}(B ; C \mid A, D)$

$\operatorname{Ind}(\mathrm{B} ; \mathrm{C} \mid \mathrm{A}, \mathrm{D})$ does not hold
In ($A, D)$ also holds

Finding a perfect map

- If P has a P-Map, can we find it?
- Not uniquely, since I-equivalent graphs are indistinguishable
- Thus, represent I-equivalent graphs and return it
- Recall I-Equivalence
- Necessary and Sufficient: same skeleton and immoral set of v-structures
- Finding P-Maps
- Step I: Find skeleton
- Step II: Find immoral set of v-structures
- Step III: Direct constrained edges

Step I: Identifying the skeleton

- Query P for Ind $(X ; Y \mid Z)$
- If there is no \mathbf{Z} for which Ind $(X ; Y \mid Z)$ holds, then $X \rightarrow Y$ or $Y \rightarrow X$ in G^{*}
- Proof: Assume no \mathbf{Z} exists, and G^{*} does not have $X \rightarrow Y$ or $Y \rightarrow X$
- Then, can find a set \mathbf{Z} such that the path from X to Y is blocked
- Then, G^{*} implies $\operatorname{Ind}(\mathrm{X} ; \mathrm{Y} \mid \mathbf{Z})$ and since G^{*} is a P -Map
- Contradiction
- Algorithm: For each pair X, Y query all \mathbf{Z}
- X-Y is in skeleton if no \mathbf{Z} is found
- If graph in-degree bounded by $d \rightarrow$ running time $\mathrm{O}\left(\mathrm{n}^{2 \mathrm{~d}+2}\right)$
- Since if no direct edge exists, $\operatorname{Ind}(X ; Y \mid P a(X), \mathrm{Pa}(Y))$

Step II: Identifying immoralities

- Find all $\mathrm{X}-\mathrm{Z}-\mathrm{Y}$ triplets where $\mathrm{X}-\mathrm{Y}$ is not in skeleton
- $X \rightarrow Z \leftarrow Y$ is a potential immorality
- If there is no \mathbf{W} such that Z is in \mathbf{W} and $\operatorname{Ind}(X ; Y \mid \mathbf{W})$, then $X \rightarrow Z \leftarrow Y$ is an immorality
- Proof: Assume no W exists but $\mathrm{X}-\mathrm{Z}-\mathrm{Y}$ is not an immorality
- Then, either $X \rightarrow Z \rightarrow Y$ or $X \leftarrow Z \leftarrow Y$ or $X \leftarrow Z \rightarrow Y$ exists
- But then, we can block X-Z-Y by Z
- Then, since X and Y are not connected, can find \mathbf{W} that includes Z such that $\operatorname{Ind}(X ; Y \mid \mathbf{W})$
- Contradiction
- Algorithm: For each pair X,Y query candidate triplets - $X \rightarrow Z \leftarrow Y$ if no \mathbf{W} is found that contains Z and $\operatorname{Ind}(X ; Y \mid \mathbf{W})$
- If graph in-degree bounded by $d \rightarrow$ running time $O\left(n^{2 d+3}\right)$ - If \mathbf{W} exists, $\operatorname{Ind}(X ; Y \mid \mathbf{W})$, and $X \rightarrow Z \leftarrow Y$ not immoral, then $Z \in \mathbf{W}$

Step III: Direct constrained edges

- If skeleton has k undirected edges, at most 2^{k} graphs
- Given skeleton and immoralities, are there additional constraints on the edges?

Original BN

I-equivalence

Not equivalent

> Equivalence class is a singleton

Step III: Direct constrained edges

- Local constraints for directing edges

Step III: Direct constrained edges

- Algorithm: iteratively direct edges by 3 local rules
- Guaranteed to converge since each step directs an edge
- Algorithm is sound and complete
- Proof strategy for completeness: show that for any single edge that is undirected, we can find two graphs, one for each possible direction

Summary

- Local independencies $I_{L}(G)$ - basic BN independencies
- d-separation - all independencies via graph structure
- G is an I-Map of P if and only if P factorizes over G
- I-equivalence - graphs with identical independencies
- Minimal I-Map
- All distributions have I-Maps (sometimes more than one)
- Minimal I-Map does not capture all independencies in P
- Perfect map - not every distribution P has one
- Reading assignment: K\&F 3.1, 3.2, 3.3, 3.4
- HW1 will be handed out next Monday!

Acknowledgement

- These lecture notes were generated based on the slides from Prof Eran Segal.

