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Lecture 3 – Apr 4, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Local Probability Models

Readings: K&F 3.4, 5.1~5.5

Outline
Last time

Conditional parameterization
Bayesian networks
Independencies in graphs

Local independencies, d-separation, I-equivalence

Today
From distributions to BN graphs
Local probability models (CPDs)

Tabular
Deterministic
Context-specific 
Independence of causal influences
Continuous variables
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I-equivalence between graphs
I(G) describe all conditional independencies in G
Different Bayesian networks can have same Ind.
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X

(X⊥Y | Z)
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(X⊥Y | Z) (X⊥Y | Z)

Z

YX

(X⊥Y)

Equivalence class I Equivalence class II

Two BN graphs G1 and G2 are I-equivalent if I(G1) = I(G2)
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I-equivalence between graphs

If P factorizes over a graph in an I-equivalence class
P factorizes over all other graphs in the same class
P cannot distinguish one I-equivalent graph from another

Implications for structure learning
We cannot find the “correct” structure from within the same 
equivalent class. -> will revisit later.

Test for I-equivalence: d-separation
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Test for I-equivalence
Necessary condition: same graph skeleton

Otherwise, can find active path in one graph but not other
But, not sufficient: v-structures

Sufficient condition: same skeleton and v-structures
But, not necessary: complete graphs (no independence)

Define X Z Y as immoral if X, Y are not directly connected
Necessary and Sufficient: same skeleton and immoral set of v-
structures
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Every two nodes are 
connected by some edge

Constructing graphs for P
Can we construct a graph for a distribution P?

Any graph which is an I-map for P

But, this is not so useful: complete graphs
Complete graphs imply no independence assumptions
Thus, they are I-maps of any distribution

CSE 515 – Statistical Methods – Spring 2011 6

Every two nodes are 
connected by some edge
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Minimal I-Maps
A graph G is a minimal I-map for P if:

G is an I-map for P
Removing any edge from G renders it not an I-map for P

Example: if                is a minimal I-map for P,

Then:             ,              ,               ,                is not I-maps.
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Bayesian network definition revisited
A Bayesian network is a pair (G,P)

P factorizes over G
P is specified as set of CPDs associated with G’s nodes
Additional requirement: G is a minimal I-map for P
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Constructing minimal I-maps
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Reverse factorization theorem
G is an I-map of P

Algorithm for constructing a minimal I-Map
Input: (1) fixed ordering of nodes X1,…,Xn; (2) set of 
independencies that hold in P, denoted by I
For each Xi, 

Select parents of Xi as minimal subset of {X1,…,Xi-1},
such that (Xi ⊥ {X1,…Xi-1 – Pa(Xi)} | Pa(Xi))∈ I

(Outline of) Proof of minimal I-map
I-map since the factorization above holds by construction
Minimal since by construction, removing one edge destroys 
the factorization 9

Non-uniqueness of minimal I-map
Applying the same I-Map construction process with 
different orders can lead to different structures

D

E

A B

C

Assume: I(G) = I(P)

Order: E,C,D,A,B
D

E

A B

C

Different independence assumptions (different 
skeletons, e.g., (A⊥B) holds on left)
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Choosing order: Drastic effects on 
complexity of minimal I-Map graph
Heuristic: Use causal order
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Perfect maps
G is a perfect map (P-Map) for P if I(P)=I(G)

Does every distribution have a P-map?
No: independencies may be encoded in CPD (X ⊥ Y|Z=1)
No: some structures cannot be represented in a BN

Independencies in P: (A ⊥ D | B,C), and (B ⊥ C | A,D)

D

A

BC

(B⊥C | A,D) does not hold

DA

BC

(A ⊥ D) also holds
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Finding a perfect map
If P has a P-map, can we find it?

Not uniquely, since I-equivalent graphs are indistinguishable
Thus, represent I-equivalent graphs and return it

Recall I-Equivalence
Necessary and Sufficient: same skeleton and immoral set of 
v-structures

Finding P-maps
Step I: Find skeleton
Step II: Find immoral set of v-structures
Step III: Direct constrained edges
Detailed algorithm: please read the textbook
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Outline
Last time

Conditional parameterization
Bayesian networks
Independencies in graphs

Local independencies, d-separation, I-equivalence

Today
From distributions to BN graphs
Local probability models

Conditional Probability Distributions (CPDs)
Table CPDs
Deterministic CPDs
Context-specific CPDs
Independence of causal influences
Continuous variables

13

Table CPDs
Entry for each joint assignment of X and Pa(X)
For each pax :
Most general representation
Represents every discrete CPD S

I s0 s1

i0 0.95 0.05

i1 0.2 0.8

I

i0 i1

0.7 0.3

P(S|I)

P(I)

I

S

∑
∈

=
)(

1)|(
XValx

xpaxP

I

S

D H…

S

I,D,…H s0 s1

I0d0  … h0 0.95 0.05

I0d0  … h1 0.2 0.8

Limitations
Cannot model continuous RVs
# parameters exponential in |Pa(X)|

→ Cannot model large in-degree dependencies
Ignores structure within the CPD

How to overcome the limitations?

P(S|I,D,…,H)

:           :
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Structured CPDs
Key idea: reduce # parameters by modeling 
P(X|PaX) without explicitly determining all entries 
of the joint

We use constraints instead.
Lose expressive power (cannot represent every CPD)

Many ways depending on the constraints
Deterministic, tree-structured, rule-based CPDs
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Deterministic CPDs
There is a function f : Val(PaX) Val(X) such that 

Example functions
OR, XOR, AND, NAND functions
Z = X+Y (continuous variables)

⎩
⎨
⎧ =

=
otherwise0

)(1
)|( x

x

pafx
paxP
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Deterministic CPDs: example I
Induce additional conditional independencies
Example: T is any deterministic function of T1,T2

T1

T

T2

S1

(S1⊥S2 | T1,T2)

S2
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Deterministic CPDs: example II
Induce additional conditional independencies
Example: C is an XOR deterministic function of A,B

D

C

A

E

B(D⊥E | B,C)
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Deterministic CPDs: example III
Induce additional conditional independencies
Example: T is an OR deterministic function of T1,T2

T1

T

T2

S1

(S1⊥S2 | T1=t1)

S2

Context specific 
independencies

19

Context specific independencies
Let X,Y,Z be disjoint random variable sets
Let C be a set of variables and c∈Val(C)

X and Y are contextually independent given Z 
and c, denoted (X⊥cY | Z, C=c) if:
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Tree CPDs
A natural representation for capturing 
common elements in CPDs
Uses a decision tree

Example – job offer
Job offer           Val(J)={yes,no}
Apply in time     Val(A)={yes,no}
Quality of Letter Val(L)={good,bad}
GPA Score         Val(S)={high,low}

A

J

L S

J

A L S j0 j1

a0 l0 s0 0.95 0.05

a0 l0 s1 0.95 0.05

a0 l1 s0 0.95 0.05

a0 l1 s1 0.95 0.05

a1 l0 s0 0.9 0.1

a1 l0 s1 0.3 0.7

a1 l1 s0 0.2 0.8

a1 l1 s1 0.2 0.8

P(J|A,L,S)

Tree CPDs: example

J

A L S j0 j1

a0 l0 s0 0.95 0.05

a0 l0 s1 0.95 0.05

a0 l1 s0 0.95 0.05

a0 l1 s1 0.95 0.05

a1 l0 s0 0.9 0.1

a1 l0 s1 0.3 0.7

a1 l1 s0 0.2 0.8

a1 l1 s1 0.2 0.8

A

J

L S A

J

L S

A

L

S

(0.95,0.05)

(0.2,0.8)

(0.3,0.7)(0.9,0.1)

a0 a1

l1l0

s1s0

A binary tree + 4 parameters8 parameters
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Rule CPDs

A rule r is a pair (c;p) where c is an assignment to a 
subset of variables C and p∈[0,1]. 

Let Scope[r]=C

A rule-based CPD P(X|Pa(X)) is a set of rules R s.t.
For each rule r∈R Scope[r]∈{X}∪Pa(X)
For each assignment (x,u) to {X}∪Pa(X) we have exactly one 
rule (c;p)∈R such that c is compatible with (x,u).
Then, we have P(X=x | Pa(X)=u) = p
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A

X

B CPa(X)

Rule CPDs

Example: Let X be a variable with Pa(X) = {A,B,C}

r1: (a1, b1, x0; 0.1)
r2: (a0, c1, x0; 0.2)
r3: (b0, c0, x0; 0.3)
r4: (a1, b0, c1, x0; 0.4)
r5: (a0, b1, c0; 0.5)
r6: (a1, b1, x1; 0.9)
r7: (a0, c1, x1; 0.8)
r8: (b0, c0, x1; 0.7)
r9: (a1, b0, c1, x1; 0.6)

Note: each assignment maps to exactly one rule

Rules cannot always be represented compactly within tree 
CPDs

A

X

B C
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Tree CPDs and Rule CPDs

Can represent every discrete function
Can be easily learned and dealt with in inference
But, some functions are not represented compactly

XOR in tree CPDs: cannot split in one step on a0,b1 and a1,b0

Alternative representations exist
Complex logical rules
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Context specific independencies

A

D

B C

C

(0.2,0.8) (0.4,0.6)(0.7,0.3)(0.9,0.1)

a0 a1

b1b0c1c0
B

A

A

D

B C

A=a1 (D⊥C | A=a1)

A

D

B C

A=a0 (D⊥B | A=a0)

Reasoning by cases implies that (B⊥C | A,D)

spurious edge
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Independence of causal influence

X1

Y

X2 Xn...
Causes: X1,…Xn
Effect: Y

General case: Y has a complex dependency on X1,…Xn

Common case
Each Xi influences Y separately
Influence of X1,…Xn is combined to an overall influence on Y
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Example 1: Noisy OR
Two independent causal mechanisms by X1, X2

Key assumptions
“OR”: Y=y1 cannot happen unless one of X1, X2 occurs
“Noisy”: each causal mechanism is noisy.
Independence of the causal mechanisms by X1, X2

P(Y=y0 | X1=x1
1 ,X2=x2

1) = P(Y=y0 | X1=x1
0 ,X2=x2

1) P(Y=y0 | X1=x1
1,X2=x2

0)

Y

X1 X2 y0 y1

x1
0 x2

0 1 0

x1
0 x2

1 0.2 0.8

x1
1 x2

0 0.1 0.9

x1
1 x2

1 0.02 0.98

X1

Y

X2
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Noisy OR: elaborate representation

Y

X’1 X’2 y0 y1

x1
0 x2

0 1 0

x1
0 x2

1 0 1

x1
1 x2

0 0 1

x1
1 x2

1 0 1

X’1

Y

X’2

X1 X2

Deterministic OR

X’1
X1 x1

0 x1
1

x1
0 1 0

x1
1 0.1 0.9

Noisy CPD 1

X’2
X2 x2

0 x2
1

x2
0 1 0

x2
1 0.2 0.8

Noisy CPD 2
Noise parameter  λX1

=0.9 Noise parameter  λX1
=0.8

29

“effective” value of 
each cause

Noisy OR: general case
Y is a binary variable with n binary parents X1,...Xn

CPD P(Y | X1,...Xn) is a noisy OR if there are (n+1) noise 
parameters λ0,λ1,...,λn such that

)1()1(),...,|(
1:

01
0

i
xXi

n
ii

XXyYP λλ ∏
=

−−==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−== ∏

=

)1()1(1),...,|(
1:

01
1

i
xXi

n
ii

XXyYP λλ

X’1

Y

X’2

X1 X2

X’n

Xn

...

i≠j: (Xi ⊥ Xj | Y=yo)
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Generalized linear models (GLMs)
A soft version of a linear threshold function

Example: logistic CPD
Binary variables X1,...Xn,Y
(Additive) combined effect of X’s
Logistic CPD: 

⎟
⎠

⎞
⎜
⎝

⎛
=+== ∑

=

n

i
iiok XwwXXyYP

1
1

1 )1(1logit),...,|(

X1

Z

X2 Xn
...

∑
=

=+=
n

i
iio Xwwz

1
)1(1

Z

z

z

e
ez
+

=
1

)(logit

Logit function (smooth step function)

Y
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General formulation
Let Y be a random variable with parents X1,...Xn

The CPD P(Y | X1,...Xn) exhibits independence of causal influence (ICI) 
if it can be described via a network structure shown below:

The CPD P(Z | Z1,...Zn) is deterministic 
Key advantage: O(n) parameters

Z1

Z

Z2

X1 X2

Y

Zn

Xn
...

...
Noisy OR
Zi has noise model

Z is an OR function 

Y is the identity CPD

Logistic
Zi = wi1(Xi=1)

Z =  ΣZi

Y = logit (Z)

32
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Continuous variables
One solution: discretize

Often requires too many value states
Loses domain structure

Other solutions: use continuous function for P(X|Pa(X))
Can combine continuous and discrete variables, resulting in 
hybrid networks
Inference and learning may become more difficult
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Gaussian density functions
Among the most common continuous representations

Univariate case:
2

2
1

2

2
1)(if),(~)(

⎟
⎠
⎞

⎜
⎝
⎛ −

−
= σ

µ

σπ
σµ

x

eXpNXP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -2 0 2 4
34
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Multivariate Gaussian density functions
A multivariate Gaussian distribution over X1,...Xn has

nx1 mean vector µ
nxn positive definite covariance matrix Σ
(positive definite:                                )
Joint density function: 

µi=E[Xi]
Σii=Var[Xi]
Σij=Cov[Xi,Xj]=E[XiXj]-E[Xi]E[Xj] (i≠j)

0: >∑ℜ∈∀ xxx Tn

⎥⎦
⎤

⎢⎣
⎡ −∑−−

∑
= − )()(

2
1exp

||)2(
1)( 1

2/12/ µµ
π

xxxp T
n
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Gaussian density functions
Marginal distributions are easy to compute

Independencies can be determined from parameters
If X=X1,...Xn have a joint normal distribution N(µ;Σ) then 
(Xi ⊥ Xj) iff Σij=0 (for i≠j)
Does not hold in general for non-Gaussian distributions

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∑∑
∑∑

⎥
⎦

⎤
⎢
⎣

⎡
=

YYYX

XYXX

Y

XYX ;),(
µ
µ

NP

( )XXXX ∑= ;)( µNP
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Linear Gaussian CPDs
Y is a continuous variable with parents X1,...Xn

Y has a linear Gaussian model if it can be described using 
parameters β0,...,βn and σ2 such that

Vector notation:

Pros
Simple
Captures many interesting dependencies

Cons
Fixed variance (variance cannot depend on parents values)

);...(),...,|( 2
1101 σβββ nnn xxNxxYP +++=

);()|( 2
0 σββ xx TNYP += X1

Y

Xn
...X2
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Linear Gaussian Bayesian network
A linear Gaussian Bayesian network is a Bayesian 
network where

All variables are continuous
All of the CPDs are linear Gaussians

Key result: linear Gaussian models are equivalent to 
multivariate Gaussian density functions

Proof? 
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Hybrid models
Models of continuous and discrete variables

Continuous variables with discrete parents
Discrete variables with continuous parents

Conditional Linear Gaussians
Y continuous variable
X = {X1,...,Xn} continuous parents
U = {U1,...,Um} discrete parents

A conditional Linear Bayesian network is one where
Discrete variables have only discrete parents
Continuous variables have only CLG CPDs

( )2
1 ,0, ;),|(: uuu xxuUu σ∑ =

+=∈∀
n

i iiaaNYP

X1

Y

Xn
... U1 Um

...
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Hybrid models
Continuous parents for discrete children

Threshold models

Linear sigmoid (logit function)

⎩
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1
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Summary: CPD models
Deterministic functions
Context specific dependencies

Tree CPDs
Rule CPDs

Independence of causal influence
Noisy OR
Logistic function

CPDs capture additional domain structure
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