Readings: K&F 3.4, 5.1-5.5

%’ | Local Probability Models

Lecture 3 — Apr 4, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Outline

= Last time
= Conditional parameterization
= Bayesian networks

= Independencies in graphs
« Local independencies, d-separation, I-equivalence

= Today

= From distributions to BN graphs

= Local probability models (CPDs)
= Tabular
= Deterministic
= Context-specific
= Independence of causal influences
= Continuous variables
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[-equivalence between graphs

= I(G) describe all conditional independencies in G
= Different Bayesian networks can have same Ind.

(X1Y]|2) X1Y|2) (XLY]|2) (XLY)

Equivalence class I Equivalence class II

Two BN graphs G, and G, are I-equivalent if I(G,) = I(G,)
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[-equivalence between graphs

= If P factorizes over a graph in an I-equivalence class
= P factorizes over all other graphs in the same class
= P cannot distinguish one I-equivalent graph from another

= Implications for structure learning

= We cannot find the “correct” structure from within the same
equivalent class. -> will revisit later.

= Test for I-equivalence: d-separation

CSE 515 — Statistical Methods — Spring 2011 4




Test for I-equivalence

= Necessary condition: same graph skeleton
= Otherwise, can find active path in one graph but not other
= But, not sufficient: v-structures

» Sufficient condition: same skeleton and v-structures

= But, not necessary: complete graphs (no independence)
_—\

Every two nodes are
connected by some edge

= Define X=>Z<Y as immoral if X, Y are not directly connected

= Necessary and Sufficient: same skeleton and immoral set of v-
structures
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Constructing graphs for P

= Can we construct a graph for a distribution P?

= Any graph which is an I-map for P | Every two nodes are
connected by some edge

- - V
= But, this is not so useful: complete graphs
= Complete graphs imply no independence assumptions
= Thus, they are I-maps of any distribution
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Minimal I-Maps

= A graph G is a minimal I-map for P if:
= Gis an I-map for P
= Removing any edge from G renders it not an I-map for P

= Example: if @’0 is @ minimal I-map for P,

Then: is not I-maps.
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Bayesian network definition revisited

= A Bayesian network is a pair (G,P)
= P factorizes over G
= P is specified as set of CPDs associated with G’s nodes
» Additional requirement: G is a minimal I-map for P
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Constructing minimal I-maps

= Reverse factorinzation theorem
s P(Xy, X)) =[[P(X;IPa(Xy)) > Gis an I-map of P

= Algorithm for constructing a minimal I-Map

« Input: (1) fixed ordering of nodes Xj,...,X,; (2) set of
independencies that hold in P, denoted by I

« For each X,

= Select parents of X; as minimal subset of {X,,...,Xi.1},

= (Outline of) Proof of minimal I-map
= I-map since the factorization above holds by construction

= Minimal since by construction, removing one edge destroys
the factorization 5

Non-uniqueness of minimal I-map

= Applying the same I-Map construction process with
different orders can lead to different structures

Choosing order: Drastic effects on
complexity of minimal I-Map graph
Assume: I(G) = I(P) Heuristic: Use causal order

G @ Order: E,C,D,A,B @’@
Different independence assumptions (different
skeletons, e.g., (A_LB) holds on left)
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Perfect maps
= G is a perfect map (P-Map) for P if I(P)=I(G)

= Does every distribution have a P-map?
= No: independencies may be encoded in CPD (X L Y|Z=1)

= No: some structures cannot be represented in a BN
= Independencies inP: (A L D | B,C),and (B . C| A,D)

®)
o)

(BLC | A,D) does not hold (A L D) also holds
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Finding a perfect map

= If P has a P-map, can we find it?
= Not uniquely, since I-equivalent graphs are indistinguishable
= Thus, represent I-equivalent graphs and return it

= Recall I-Equivalence

= Necessary and Sufficient: same skeleton and immoral set of
v-structures

= Finding P-maps
= Step I: Find skeleton
= Step II: Find immoral set of v-structures
= Step III: Direct constrained edges
= Detailed algorithm: please read the textbook
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Outline

= Last time
= Conditional parameterization
= Bayesian networks

= Independencies in graphs
« Local independencies, d-separation, I-equivalence

= Today
= From distributions to BN graphs

= Local probability models
= Conditional Probability Distributions (CPDs)
= Table CPDs
= Deterministic CPDs
= Context-specific CPDs
= Independence of causal influences
= Continuous variables

Table CPDs P(1)

/
= Entry for each joint assignment of X and Pa(X) oo
= Foreachpa,: > P(x|pa)=1 07 03
= Most general réeﬁr(e)sentation P(S|T)
= Represents every discrete CPD s
/ s0 st
i0 0.95 0.05
it 0.2 0.8
= Limitations

= Cannot model continuous RVs
= # parameters exponential in |Pa(X)|
- cannot model large in-degree dependencies e P(S|LD,...,.H)

= Ignores structure within the CPD s
1,D,...H |s° st

L. . 1°d% -ho | 0.95 0.05
= How to overcome the limitations? v ont |02 08




Structured CPDs

= Key idea: reduce # parameters by modeling
P(X]|Pay) without explicitly determining all entries
of the joint
= We use constraints instead.
= Lose expressive power (cannot represent every CPD)

= Many ways depending on the constraints
= Deterministic, tree-structured, rule-based CPDs
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Deterministic CPDs
= There is a function 7: Val(Pay) = Val(X) such that

x=f(pa,)
otherwise

P(x| pa,) ={;

= Example functions
= OR, XOR, AND, NAND functions
= Z = X+Y (continuous variables)
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Deterministic CPDs: example I

= Induce additional conditional independencies
= Example: T is any deterministic function of T, T,

(5,15, 1 T — (@)
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Deterministic CPDs: example II

= Induce additional conditional independencies
= Example: Cis an XOR deterministic function of A,B

(D)
®iEIBO) — @& (B
® ©
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Deterministic CPDs: example III

= Induce additional conditional independencies
= Example: T is an OR deterministic function of T,, T,

(5,15, | T=t)  — (T)

Context specific

independencies
19

Context specific independencies

= Let X,Y,Z be disjoint random variable sets
= Let C be a set of variables and ceVal(C)

= X and Y are contextually independent given Z
and ¢, denoted (XL.Y | Z, C=c) if:
P(X|Y,Z,c)=P(X|Z,c)whenever P(Y,Z,c)>0
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Tree CPDs

= A natural representation for capturing
common elements in CPDs

= Uses a decision tree 0 G 9

= Example — job offer POIAL,S)
= Job offer Val(J)={yes,no} J

= Apply in time  Val(A)={yes,no} :0 ILO fo ]:_95 ];.05

» Quality of Letter Val(L)={good,bad} |, |r |s |oss oo0s
= GPA Score Val(S)={high,low} |a |1 | [095 005
a0 It st 0.95 0.05
al 10 s0 0.9 0.1
al 10 st 0.3 0.7
al |t s0 0.2 0.8
al It st 0.2 0.8

Tree CPDs: example

A L s Jd jt

al 10 s0 0.95 0.05
a 10 st 0.95 0.05
a I s0 0.95 0.05
a I st 0.95 0.05
at 10 s0 09 0.1
at 10 st 03 07
at It s0 02 08
at It st 02 08

(0.9,0.1)  (0.3,0.7)

8 parameters A binary tree + 4 parameters




Rule CPDs

= A ruleris a pair (c;p) where ¢ is an assignment to a
subset of variables C and p<[0,1].
= Let Scope[r]=C

= A rule-based CPD P(X|Pa(X)) is a set of rules R s.t.
= For each rule reR - Scope[r]e{X}uPa(X)

» For each assignment (x,u) to {X}uUPa(X) we have exactly one
rule (c;p)eR such that c is compatible with (x,u).
Then, we have P(X=x | Pa(X)=u) = p

o ® ® @
s
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Rule CPDs

= Example: Let X be a variable with Pa(X) = {A,B,C}

ri: (ai, bt, x%; 0.1)

r2: (a, ct, x%; 0.2)

r3: (b9, ¢, x9; 0.3) e e e
r4: (ai, bo, ct, x0; 0.4)

r5: (a% bt, c; 0.5)

ré: (ai, bt, xt; 0.9)

r7: (av, ct, xt; 0.8)

r8: (b9, c9, xi; 0.7)

r9: (ai, bo, ct, xi; 0.6)

= Note: each assignment maps to exactly one rule

. (I%Bbes cannot always be represented compactly within tree
S
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Tree CPDs and Rule CPDs

Can represent every discrete function
Can be easily learned and dealt with in inference
But, some functions are not represented compactly

= XOR in tree CPDs: cannot split in one step on a% bt and a?,b?

= Complex logical rules

Alternative representations exist
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Context specific independencies

A=at > (DLC| A=al)

®@® ©

spurious edge

A=a% > (D1 B | A=a%

®E ©
o)

N
S

(0.9,0.1) (0.7,0.3) (0.2,0.8) (0.4,0.6)

Reasoning by cases implies that (B_LC | A,D)




Independence of causal influence

Causes: Xy,...X,
Effect: Y

= General case: Y has a complex dependency on X;,...X,

= Common case
» Each X; influences Y separately
= Influence of X,,...X,, is combined to an overall influence on Y
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Example 1: Noisy OR

= Two independent causal mechanisms by X;, X,

= Key assumptions
= "OR": Y=y! cannot happen unless one of X,, X, occurs
= “Noisy”: each causal mechanism is noisy.

= Independence of the causal mechanisms by X, X,
= POY=Y0 | X=Xt Xo=x0) = POY=Y0 | Xi=x,0 , X%=%,0) P(Y=Y0 | X=X, X=x%,0)

%) %)
0

X;° X0 1 0
X;° Xp! 02 08
X;! X0 0.1 09
X;! Xp! 0.02 0.98




Noisy OR: elaborate representation

“effective” value of

@ @ / each cause

X, X,
X, | x°  xd - R ) 0 %!
X0 1 0 X0 1 0
x! (01 09 %! |02 08
Noisy CPD 1 ° Noisy CPD 2

Noise parameter kxl=0.9 Noise parameter kxl=0.8

Y

Xi [ X Y !

Y

X0 %50 1 0
X0 Xyt 0 1
1

1

X! %50 0

X! Xyt 0

Deterministic OR 2

Noisy OR: general case

= Y is a binary variable with n binary parents X;,...X,

= CPD P(Y | X,...X,) is @ noisy OR if there are (n+1) noise
parameters Aq,Aq,...,A, SUch that

PCY =y Xy Xn)=(1—/?o)_'Hl(1—ﬂf.)
PCY =y" [ X;eey Xn)=1{(1—ﬂo)l_[(1—/l.)}

iX=x

i) (X L X | Y=y°)




Generalized linear models (GLMs)

= A soft version of a linear threshold function

= Example: logistic CPD @ @ @

= Binary variables X;,...X,,Y . e
= (Additive) combined effect of X's  z=w,+> wi(X; =1)

i=1

= Logistic CPD: °
POY =y Xy X, ) = Iogit(wo £y WX, =1)J

i=1

Logit function (smooth step function)

10
09
08
07
08

z

logit(z) =~

04

03
02
01
[
9 8 7 65432401 23 4567 89

z 31

General formulation

= LetY be a random variable with parents X;,...X,

= The CPD P(Y | Xi,...X,) exhibits independence of causal influence (ICI)
if it can be described via a network structure shown below:

Logistic Noisy OR

Z, = wil(X;=1) Z;has noise model
Z= %7, Z is an OR function
Y = logit (2) Y is the identity CPD

The CPD P(Z | Z4,...Z,) is deterministic
= Key advantage: O(n) parameters
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Continuous variables

= One solution: discretize
= Often requires too many value states
= Loses domain structure

= Other solutions: use continuous function for P(X|Pa(X))

= Can combine continuous and discrete variables, resulting in
hybrid networks

= Inference and learning may become more difficult
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Gaussian density functions

= Among the most common continuous representations

= Univariate case:

P(X)~ N(u0?) if p(x):éae-z(;l

0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.05
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Multivariate Gaussian density functions

= A multivariate Gaussian distribution over X,...X, has
= Nx1 mean vector p
= hxn positive definite covariance matrix £

(positive definite: wx e R":x" X x>0)
= Joint density function:

p(x) = exp{—;(x—uf > (x —u)}

1
(271')n/2 | Z |1/2
= w=E[X]

« Xi=Var[Xi]
= 2y=Cov[X, X/ =EXX/-EIXIELX;] (i)
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Gaussian density functions

= Marginal distributions are easy to compute
P(X,Y)= N[|:,ux:| : |:Zxx ZxY :D
Hy ZYX ZYY

P(X)= N(,ux ; Zxx)

= Independencies can be determined from parameters

» If X=X,,...X, have a joint normal distribution N(w;Z) then
(X L X)) iff Z;=0 (for i#j)
= Does not hold in general for non-Gaussian distributions
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Linear Gaussian CPDs

Y is a continuous variable with parents X;,...X,

Y has a linear Gaussian model if it can be described using
parameters By,...,8, and o2 such that
s POY X, X)) = N(B, + BX, +.t B X, 107)
= Vector notation: P(Y | x) = N(f, + 8" x;c?)

= Pros
= Simple
= Captures many interesting dependencies

= Cons
= Fixed variance (variance cannot depend on parents values)
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Linear Gaussian Bayesian network

= A linear Gaussian Bayesian network is a Bayesian
network where

= All variables are continuous
= All of the CPDs are linear Gaussians

= Key result: linear Gaussian models are equivalent to
multivariate Gaussian density functions

s Proof?
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Hybrid models

= Models of continuous and discrete variables
= Continuous variables with discrete parents
= Discrete variables with continuous parents

» Conditional Linear Gaussians

Y continuous variable

X = {Xi,..., X} continuous parents
U = {U,,...,U,} discrete parents

vueU: P(Y|u,x):N(au,0+Zin a .x.'aj)

-1 Gui i

= A conditional Linear Bayesian network is one where
= Discrete variables have only discrete parents
= Continuous variables have only CLG CPDs
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Hybrid models

= Continuous parents for discrete children

. 0.9 x <10
Threshold models P(Y = y'[X) = .
0.05 otherwise

= Linear sigmoid (logit function)
P(Y = y'| X, X)) = logit(w, + > wix;)
i=1
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Summary: CPD models

Deterministic functions
= Context specific dependencies
= Tree CPDs
= Rule CPDs
= Independence of causal influence
= Noisy OR
= Logistic function
= CPDs capture additional domain structure
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