Lecture 4 - Apr 6, 2011

CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Bayesian Network Representation

- Directed acyclic graph structure
- Conditional parameterization
- Independencies in graphs
- From distribution to BN graphs
- Conditional probability distributions (CPDS)
- Table
- Deterministic
- Context-specific (Tree, Rule CPDs)
- Independence of causal influence (Noisy OR, GLMs)
- Continuous variables
- Hybrid models

The Misconception Example

- Four students get together in pairs to work on HWs: Alice, Bob, Charles, Debbie
- Only the following pairs meet: $(A \& B),(B \& C),(C \& D),(D \& A)$
- Let's say that the prof accidentally misspoke in class
- Each student may subsequently have figured out the problem.
- In subsequent study pairs, they may transmit this newfound understanding to their partners.
- Consider 4 binary random variables
- A, B, C, D: whether the student has the misconception or not.
- Independence assumptions?

$$
(A \perp C \mid B, D),(B \perp D \mid A, C)
$$

Reminder: Perfect Maps

- G is a perfect map (P -map) for P if $\mathrm{I}(\mathrm{P})=\mathrm{I}(\mathrm{G})$
- Does every distribution have a P-map?
- No: some structures cannot be represented in a BN
- Independencies in $P:(A \perp D \mid B, C)$ and $(B \perp C \mid A, D)$

($B \perp C \mid A, D$) does not hold

Representing Dependencies

- ($A \perp D \mid B, C$) and ($B \perp C \mid A, D$)
- Cannot be modeled with a Bayesian network.
- Can be modeled with an undirected graphical models (Markov networks).

Undirected Graphical Models (Informal)

- Nodes correspond to random variables
- Edges correspond to direct probabilistic interaction
- An interaction not mediated by any other variables in the network.
- How to parameterize?
- Local factor models are attached to sets of nodes
- Factor elements are positive

\mathbf{A}	\mathbf{D}	$\pi_{1}[\mathbf{A}, \mathbf{C}]$
a^{0}	$\mathrm{~d}^{0}$	100
a^{0}	$\mathrm{~d}^{1}$	1
a^{1}	$\mathrm{~d}^{0}$	1
a^{1}	$\mathrm{~d}^{1}$	100

- Do not have to sum to 1
- Represent affinities, notaproo. compatibilities

C D	$\pi_{3}[\mathbf{C}, \mathrm{D}]$	(C)	B	C	$\pi_{4}[\mathbf{B}, \mathrm{C}]$
$\mathrm{c}^{0} \mathrm{~d}^{0}$	1		b^{0}	c^{0}	100
$\mathrm{c}^{0} \quad \mathrm{~d}^{1}$	100		b^{0}	c^{1}	1
$\mathrm{c}^{1} \quad \mathrm{~d}^{0}$	100		b^{1}	c^{0}	1
$\mathrm{c}^{1} \mathrm{~d}^{1}$	1		b^{1}	c^{1}	1000

Undirected Graphical Models (Informal)

- Represents joint distribution
- Unnormalized factor

$$
F(a, b, c, d)=\pi_{1}[a, b] \pi_{2}[a, c] \pi_{3}[b, d] \pi_{4}[c, d]
$$

- Probability $\left.=\pi_{4}[A=a, B=b] \pi I I A=a, C=c\right] \pi_{b}[B-b, D=d] \pi_{4}[C=c D=d]$

$$
\begin{aligned}
& P(a, b, c, d)=\frac{1}{(Z)} \pi_{1}[a, b] \pi_{2}[a, c] \pi_{3}[b, d] \pi_{4}[c, d] \\
& \text { Partition function }
\end{aligned}
$$

C

$$
Z=\sum_{a, b, c, d} \pi_{1}[a, b] \pi_{2}[a, c] \pi_{3}[b, d] \pi_{4}[c, d]
$$

- As undirected graphical models represent joint distributions, they can be used for answering queries.

Undirected Graphical Models Blurb

- Useful when edge directionality cannot be assigned
- Simpler interpretation of structure
- Simpler inference
- Simpler independency structure $\}$
- Harder to learn parameters/structures ω कhy?

$$
\text { eq. } Z=\sum_{i_{1}} \cdots \sum_{x_{n}} F\left(x_{1} \cdots x_{n}\right)
$$

- We will also see models with combined directed and undirected edges (e.g. condritonal random fields)
- Markov networks

Markov Network Structure

- Undirected graph H
- Nodes X_{1}, \ldots, X_{n} represent random variables $B N$ graph $G: I(G)=\left\{X_{i} \perp N D\left(z_{2}\right) \mid P\left(B L_{i}\right)\right\}$
- H encodes independence assumptions

- A path $X_{1}-X_{2}-\ldots-X_{k}$ is active if none of the X_{i} variables along the path are observed
- \mathbf{X} and \mathbf{Y} are separated in H given \mathbf{Z} if there is no active path between any node $\mathbf{x} \in \mathbf{X}$ and any node $\mathbf{y} \in \mathbf{Y}$ given \mathbf{Z}
- Denoted $\operatorname{sep}_{H}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$
$D \perp\{A, C\} \mid B$

Global_independencies associated with H :

Relationship with Bayesian Network

- Bayesian network
- Local independencies \rightarrow Independence by d-separation (global)
- Markov network Is $_{\text {(}}$ G)
- Global independencies \rightarrow ocal independencies separation
- Can all independencies encoded by Markov networks be encoded by Bayesian networks?
- No, counter example - $(A \perp B \mid C, D)$ and $(C \perp D \mid A, B)$
- Can all independencies encoded by Bayesian networks be encoded by Markov networks?
- No, immoral v-structures (explaining away)
- Markov networks encode monotonic independencies
- If $\operatorname{sep}_{H}(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z})$ and $\mathbf{Z} \subseteq \mathbf{Z}^{\prime}$ then $\operatorname{sep}_{H}\left(\mathbf{X} ; \mathbf{Y} \mid \mathbf{Z}^{\prime}\right)$

Markov Network Factors

- A factor (or "potential") is a function from value assignments of a set of random variables \mathbf{D} to real positive numbers \mathfrak{R}^{+}
- The set of variables \mathbf{D} is the scope of the factor
- Factors generalize the notion of CPDs
- Every CPD is a factor (with additional constraints)

Factors and Joint Distribution

- Can we represent any joint distribution by using only factors that are defined on edges?
- No! Compare \# of parameters
- Example: n binary RVs
- Joint distribution has $2^{n}-1$ independent parameters
- Markov network with edge factors has $4\binom{n}{2}$ parameters

Needed: $2^{71}-1=127$!
v
Edge parameters: $4 \cdot\left({ }_{7} \mathrm{C}_{2}\right)=84$

Factors introduce constraints on joint distribution

Factors and Graph Structure

- Are there constraints imposed on the network structure H by a factor whose scope is \mathbf{D} ?
- Hint 1: think of the independencies that must be satisfied
- Hint 2: generalize from the basic case of $|\mathbf{D}|=2$

The induced subgraph over \mathbf{D} must be a clique (fully connected)
Why? otherwise two unconnected variables may be independent by blocking the active path between them, contradicting the direct dependency between them in the factor over \mathbf{D}

Markov Network Factors: Examples

Maximal cliques

- $\{A, B\}$
- $\{B, C\}$
- \{C,D\}
- \{A,D\}

Markov Network Distribution

- A distribution P factorizes over H if it has:
- A set of subsets $\mathbf{D}_{1}, \ldots \mathbf{D}_{m}$ where each \mathbf{D}_{i} is a complete (fully connected) subgraph in $H \quad$ Giclique
- Factors $\pi_{1}\left[\mathbf{D}_{1}\right], \ldots, \pi_{m}\left[\mathbf{D}_{\mathrm{m}}\right]$ such that

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} f\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod \pi_{i}\left[\mathbf{D}_{i}\right]
$$

where un-normalized factor: $f\left(X_{1}, \ldots, X_{n}\right)=\prod \pi_{i}\left[\mathbf{D}_{i}\right]$

$$
Z=\sum_{X_{1}, \ldots, X_{n}} f\left(X_{1}, \ldots, X_{n}\right)=\sum_{X_{1}, \ldots, X_{n}} \prod_{i}\left[\boldsymbol{D}_{i}\right]
$$

- Z is called the partition function
- P is also called a Gibbs distribution over H

Pairwise Markov Networks

- A pairwise Markov network over a graph H has:
- A set of node potentials $\left\{\pi\left[X_{j}\right]: i=1, \ldots n\right\}$
- A set of edge potentials $\left\{\pi\left[X_{i}, X_{j}\right]: X_{i}, X_{j} \in H\right\}$

Logarithmic Representation

- We represent energy potentials by applying a log transformation to the original potentials
- $\pi[\mathbf{D}]=\exp (-\varepsilon[\mathbf{D}])$ where $\varepsilon[\mathbf{D}]=-\ln \pi[\mathbf{D}]$
- Any Markov network parameterized with factors can be converted to a logarithmic representation
- The log-transformed potentials can take on any real value
- The joint distribution decomposes as

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \exp \left[-\sum_{i=1}^{m} \varepsilon_{i}\left[\boldsymbol{D}_{i}\right]\right]
$$

I-Maps and Factorization

- Independency mappings (I-map)
- $I(P)$ - set of independencies ($\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$) in P
- I-map - independencies by a graph is a subset of I(P)
- Bayesian Networks
- Factorization and reverse factorization theorems
- G Is an I-map of $\operatorname{iff} \mathrm{P}$ factorizes as $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right)$
- Markov Networks
- Factorization and reverse factorization theorems
- His an I-map of Piff P factorizes as $P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{7} \prod \pi_{i}\left[\boldsymbol{D}_{i}\right]$

Reverse Factorization

- $P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod \pi_{i}\left[\boldsymbol{D}_{i}\right] \rightarrow \mathrm{H}$ is an I-map of P
- Proof:
- Let $\mathbf{X}, \mathbf{Y}, \mathbf{W}$ be any three disjoint sets of variables such that \mathbf{W} separates \mathbf{X} and \mathbf{Y} in \mathbf{H}
- We need to show $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W}) \in I(P)$
- Case 1: $\mathbf{X} \cup \mathbf{Y} \cup \mathbf{W}=\cup$ (all variables)
- As \mathbf{W} separates \mathbf{X} and \mathbf{Y} there are no direct edges
 between \mathbf{X} and \mathbf{Y}
\rightarrow any clique in H is fully contained in $\mathbf{X} \cup \mathbf{W}$ or $\mathbf{Y} \cup \mathbf{W}$
- Let $I_{\mathbf{X}}$ be cliques in $\mathbf{X} \cup \mathbf{W}$ and $I_{\mathbf{Y}}$ be cliques in $\mathbf{Y} \cup \mathbf{W}$ (not in I_{x}) $\rightarrow_{P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i \in I_{X}} \pi_{i}\left[\boldsymbol{D}_{i}\right] \prod_{i \in I_{Y}} \pi_{i}\left[\boldsymbol{D}_{i}\right]=\frac{1}{Z} f(\boldsymbol{X}, \boldsymbol{W}) g(\boldsymbol{Y}, W)}$ $\rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W}) \in \mid(P)$

Reverse Factorization

$\square P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod \pi_{i}\left[\boldsymbol{D}_{i}\right] \rightarrow \mathrm{H}$ is an I-map of P

- Proof:
- Let X,Y,W be any three disjoint sets of variables such that \mathbf{W} separates \mathbf{X} and \mathbf{Y} in \mathbf{H}
- We need to show $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W}) \in I(P)$
- Case 2: $\mathbf{X} \cup \mathbf{Y} \cup \mathbf{W} \subset \cup$ (all variables)
- Let $\mathbf{S}=\underline{\mathbf{U}}-(\mathbf{X} \cup \mathbf{Y} \cup \mathbf{W})$
- S can be partitioned into two disjoint sets \mathbf{S}_{1} and

\mathbf{S}_{2} such that \mathbf{W} separates $\mathbf{X} \cup \mathbf{S}_{\mathbf{1}}$ and $\mathbf{Y} \cup \mathbf{S}_{\mathbf{2}}$ in H
- From case 1, we can derive ($\mathbf{X}, \mathbf{S}_{1} \perp \mathbf{Y}, \mathbf{S}_{2} \mid \mathbf{W}$) $\in(\mathrm{P})$
- From decomposition of independencies
$\rightarrow(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W}) \in I(P)$

Factorization

- If H is an I-map of P then $P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod \pi_{i}\left[\boldsymbol{D}_{i}\right]$
- Holds only for positive distributions P
- Hammerly-Clifford theorem
- Defer proof

Relationship with Bayesian Network

- Bayesian Networks

$$
\text { locel } \rightarrow \text { global }
$$

- Semantics defined via local independencies $I_{\llcorner }(G)$.
- Global independencies induced by d-separation
- Local and global independencies equivalent since one implies the other
- Markov Networks

$$
\text { global } \stackrel{?}{\rightarrow} \text { local }
$$

- Semantics defined via global separation property I(H)
- Can we define the induced local independencies?
- We show two definitions (call them "Local Markov assumptions")
- All three definitions (global and two local) are equivalent only for positive distributions P

Pairwise Independencies

- Every pair of disconnected nodes are separated given all other nodes in the network
- Formally: $I_{P}(H)=\{(X \perp Y \mid U-\{X, Y\}): X-Y \notin H\}$

Example:
$(A \perp D \mid B, C, E)$
($B \perp C \mid A, D, E$) $(D \perp E \mid A, B, C)$

Local Independencies

- Every node is independent of all other nodes given its immediate neighboring nodes in the network Markov blank of $\mathrm{X}, \mathrm{MB}_{\mathrm{H}}(\mathrm{X})$
- Formally: $I_{L}(H)=\left\{\left(X \perp U-\{X\}-\mathrm{MB}_{H}(X) \mid \mathrm{MB}_{H}(X)\right): X \in H\right\}$

> Example:
> $(A \perp D \mid B, C, E)$
> $(B \perp C \mid A, D, E)$
> $(C \perp B \mid A, D, E)$
> $(D \perp E, A \mid B, C)$
> $(E \perp D \mid A, B, C)$

Relationship Between Properties

- Let I(H) be the global separation independencies
- Let $I_{L}(H)$ be the local (Markov blanket) independencies
- Let $I_{P}(H)$ be the pairwise independencies
- For any distribution P:
- I $(\mathrm{H}) \rightarrow \mathrm{I}_{\mathrm{L}}(\mathrm{H})$
- The assertion in $I_{L}(H)$, that a node is independent of all other nodes given its neighbors, is part of the separation independencies since there is no active path between a node and its non-neighbors given its neighbors
- $I_{L}(H) \rightarrow I_{P}(H)$
- Follows from the monotonicity of independencies in Markov networks (if ($\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$) and $\mathbf{Z} \subseteq \mathbf{Z}^{\prime}$ then ($\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}^{\prime}$))

Relationship Between Properties

- Let I(H) be the global separation independencies
- Let $\mathrm{I}_{\mathrm{L}}(\mathrm{H})$ be the local (Markov blanket) independencies
- Let $I_{p}(H)$ be the pairwise independencies
- For any positive distribution P:
- $I_{p}(H) \rightarrow I(H)$
- Proof relies on intersection property for probabilities $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}, \mathbf{W})$ and $(\mathbf{X} \perp \mathbf{W} \mid \mathbf{Z}, \mathbf{Y}) \xrightarrow{\rightarrow}(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$
which holds in general only for positive distributions
- Details on the textbook
- Thus, for positive distributions
- I (H) $\leftrightarrow I_{L}(H) \leftrightarrow I_{P}(H)$
- How about a non-positive distribution?

The Need for Positive Distribution

- Let P satisfy
- A is uniformly distributed
- $A=B=C$
- P satisfies $I_{P}(H)$
- ($B \perp C \mid A$), $(A \perp C \mid B)$
(since each variable determines all others)

- P does not satisfy $I_{L}(H)$
- ($C \perp A, B$) needs to hold according to $I_{L}(H)$ but does not hold in the distribution

Constructing Markov Network for P

- Goal: Given a distribution, we want to construct a Markov network which is an I-map of P
- Complete (fully connected) graphs will satisfy but are not interesting
- Minimal I-maps: A graph G is a minimal I-Map for P if:
- G is an I-map for P
- Removing any edge from G renders it not an I-map
- Goal: construct a graph which is a minimal I-map of P

Constructing Markov Network for P

- If P is a positive distribution, then $I(H) \leftrightarrow I_{L}(H) \leftrightarrow(H)$
- Thus, sufficient to construct a network that satisfies $I_{p}(H) \mathbb{R}$
- Construction algorithm
- For every (X, Y) add edge if $(X \perp Y \mid U-\{X, Y\})$ does not hold in P
- Theorem: network is minimal and unique I-map
- Proof:
- 1-map follows since $I_{P}(H)$ by construction and $I(H)$ by equivalence
- Minimality follows since deleting an edge implies ($X \perp Y \mid U-\{X, Y\}$) But, we know by construction that this does not hold in P since we added the edge in the construction process
- Uniqueness follows since any other I-map has at least these edges and to be minimal cannot have additional edges

Summary: Markov Network Representation

- Independencies in graph H
- Global independencies $I(H)=\left\{(X \perp Y \mid Z)\right.$: $\left.\operatorname{sep}_{H}(X ; Y \mid Z)\right\}$
- Local independencies $I_{L}(H)=\left\{\left(X \perp U-\{X\}-\mathrm{MB}_{\mathrm{H}}(X) \mid \mathrm{MB}_{\mathrm{H}}(\mathrm{X})\right): X \in \mathrm{H}\right\}$
- Pairwise independencies $I_{P}(H)=\{(X \perp Y \mid U-\{X, Y\}): X-Y \notin H\}$
- For any positive distribution P, they are equivalent.
- (Reverse) factorization theorem: I-map \leftrightarrow factorization
- Markov network factors
- Has to encompass cliques
- Maximal cliques, edge potentials
- Pairwise Markov network
- Node/ edge potentials
- Application in vision (image segmentation)
- What next?
- Log-linear model
- Log-transformation of potentials
- Features instead of factors
- Constructing Markov networks from Bayesian networks
- "Partially" directed graph (e.g. Conditional Random Fields)

Acknowledgement

- These lecture notes were generated based on the slides from Prof Eran Segal.

