Readings: K&F 4.1, 4.2, 4.3

‘ Undirected Graphical Models |

Lecture 4 — Apr 6, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Bayesian Network Representation

= Directed acyclic graph

= Conditional parameterization
= Independencies in graphs f
= From distribution to BN graphs

= Conditional probability distributions (CPDs
= Table
= Deterministic
Context-specific (Tree, Rule CPDs)
Independence of causal influence (Noisy OR, GLMs)
Continuous variables
Hybrid models
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The Misconception Example

= Four students get together in pairs to work on HWs:
Alice, Bob, Charles, Debbie

Only the following pairs meet: (A&B)), @ @

Let’s say that the prof accidentally misspoke in class
= Each student may subsequently have figured out the problem.

= In subsequent study pairs, they may transmit this newfound
understanding to their partners.

Consider 4 binary random variables
= A, B, C, D: whether the student has the misconception or not.

Independence assumptions? e

(ALCI8.D), (BLDIA,C) Qee
Can we find the @for these? e

Reminder: Perfect Maps
= G is a perfect map (P-map) for P if I(P)=I1(G)

= Does every distribution have a P-map?

= NO: some structures cannot be represented in a BN
« Independencies inP: (ALD | B, C) and (BJ.C@

Ol

(BLLC | A,D) does not hold ~ ( éAL D))also holds

wwantesl_
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Representing Dependencies

= (ALD|B,C)and (BLLC | A,D)
= Cannot be modeled with a Bayesian network.

= Can be modeled with an undirected graphical models
(Markov networks).
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Undirected Graphical Models (Informal)
] correspond to random variables

= (Edges correspond to direct probabilistic interaction

= An interaction not mediated by any other variables in the network.

= How to@arameterizes? a

A D |mI[AC] A B |m[AB]

30

5 &

m Local factor models are
attached to sets of nodes
= Factor elements are positive

1 <«

= Do not have tosumto 1
L wot a pob.
= Represent affinities

\AAMAAAA~ASL-
compatibilities




Undirected Graphical Models (Informal)
F(a,b,c,d) = z,[a,b]z,[a,c]r,[b,d]x,[c,d]
F(A=a,8%,C=¢, P=d) - Gdpe anktipToation
—.
bt gl Tbal, ©
= Partition function_ abcd

= Represents joint distribution
= Unnormalized factor :
= Probability =GiaB=bICIAM, C=c1TG B, PAITLLCePd] e‘e
P(a,b,c,d) = L [a,b]z,[a,c]z,[b,d]z,[c,d]
Z= Z;zl[a, blz,[a,c]z,[b,d]z,[c,d]
ab,cd

= As undirected graphical models represent joint
distributions, they can be used for answering queries.
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Undirected Graphical Models Blurb

= Useful when edge directionality cannot be assigned

= Simpler interpretation of structure
= Simpler inference ?
= Simpler independency structure

= Harder to learn parameters/structures  why?

eq 2= £ P w)

= We will also see models with combined directed and
undirected edges Ceg. condrional randon. flelolsy

= Markov networks
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Markov Network Structure

ﬂuw?*( 12)
= Undirected graph H
= Nodes X,,...,X, represent random variables “,
BN gogh G Ti(a)=f % N0 | BB @

= H encodes independence assumptions

= A path X;-X,-...-X, is active if none of the X; variables along
the path are observed
= X and Y are separated in H given Z if there is no active
path between any node xeX and any node yeY given Z
= Denoted sep,(X;Y|2)

D1{AC}|B

Glabal independencies associated with H:
I(H) = {(XLY]Z) : sep,(X;Y1Z)} o

Relationship with Bayesian Network

= Bayesian network

= Local independencies > Independence by (global)
Markov network &)

= Global independengies eindependencies

Sepowsore

= Can all independencies encoded by Markov networks be
encoded by Bayesian networks?
= No, counter example — (ALB | C,D) and (C LD | A,B)

= Can all independencies encoded by Bayesian networks be
encoded by Markov networks?
= No, immoral v-structures (explaining away)
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Markov Network Factors

= A factor (or “potential”) is a function from value assignments
of a set of random variables D to real positive numbers R*
= The set of variables D is the scope of the factor

» Factors generalize the notion of CPDs
= Every CPD is a factor (with additional constraints)

Seope. of T4 stopeof T
{\L./\ (\44

X W | m[X,W] X Y [m[X)Y]
X0 wO | 100 X0 y0 |30

X0 wl|1 xX0 oyl |5
xtowo |1 xtoy0 |1

xt w! | 100 / yt | 10
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Factors and Joint Distribution

= Can we represent any joint distribution by using
only factors that are defined on edges?
= No! Compare # of parameters
= Example: n binary RVs
= Joint distribution has 2"-1 independent parameters

n
= Markov network with edge factors has 4(2j parameters

Needed: 27-1 = 127!
Y
Edge parameters: 4-(,C,)=84

= Factors introduce constraints on joint distribution
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Factors and Graph Structure

= Are there constraints imposed on the network structure
H by a factor whose scope is D?
= Hint 1: think of the independencies that must be satisfied
= Hint 2: generalize from the basic case of |D|=2

The induced subgraph over D must be a clique (fully connected)

Why? otherwise two unconnected variables may be independent
by blocking the active path between them, contradicting the
direct dependency between them in the factor over D

(6 L% | Someting) .
. X1,X2,X3,X4 | D[x1,x2,x3,x4] CIIqueS
k (FFFF) 100

(FREET) 5

(FRTF) 3

(RETT) 100

Markov Network Factors: Examples
W*ofu"‘ﬁe'd?W“'

B
&

TG00
S TR T4
\ ‘&

N RN_ —
>
Maximal cliques Maximal, cliques
- {A’B} [ {A,B,C}
« {B,C} =« {A,C,D}
= {C,D}
« {AD}
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Markov Network Distribution

m A distribution P factorizes over H if it has:

= A set of subsets D,,...D,, where each D; is a complete
(fully connected) subgraph in H Geligue

= Factors m,[D,],...,7,[D,,] such that

P(X, x,):%f(x1 ..... xg:%]‘[ﬂi[oi]

where un-normalized factor: f(X,....X,)=[]=[D/]

= Z is called the partition function
= P is also called a Gibbs distribution over H
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Pairwise Markov Networks

= A pairwise Markov network over a graph H has:
= A set of node potentials {=[X]:i=1,...n}
= A set of edge potentials {n[X;,X]: X;,X;eH}

= Example:
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Logarithmic Representation

= We represent energy potentials by applying a log
transformation to the original potentials
= 1[D] = exp(-¢[D]) where ¢[D] = -In n[D]
= Any Markov network parameterized with factors can be
converted to a logarithmic representation
= The log-transformed potentials can take on any real value
= The joint distribution decomposes as

p(xl,...,xn):%exp{—_}m]a[Di]}

P(X) is a
[linear)function. of 301
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I-Maps and Factorization

= Independency mappings (I-map)
= I(P) — set of independencies (X LY | 2Z2)inP
= |-map — independencies by a graph is a subset of I1(P)

= Bayesian Networks
= Factorization and reverse factorization theorems

T

= (G 1S an I-map of Piff P factorizes ascP(X....., =T]P(X

| Pa(Xx;)

= Markov Networks
= Factorization and reverse factorization theorems

=(HT5an I-map of Piff P factorizes as ‘m :
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Reverse Factorization
B P(Xl,---,xn)=%Hﬂi[Di]9 H is an I-map of P

= Proof:

= Let X,Y,W be any three disjoint sets of
variables such that/\W separates X and Y in H

= We need to show((X L Y]W)el(P)

= Case 1: XuYUW=U (all variables)

= As W separates X and Y there are po direct edges
between X and Y

- any clique in H is fully contained in XUW or YOUW
= Let I, be cliques in XuW and I be cliques in YOW
(notin 1y) ,‘m\( f.,,ox

> (X X,) =2 [[AIDI[[ IO = F(XW)g(Y W)

iely iely

S MWEIE)
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Reverse Factorization
= P(X,...X,)= > [[m[D]> H s an I-map of P

= Proof:
= Let X,Y,W be any three disjoint sets of
variables such that W separates X and Y in H
= We need to show (X LY|W)el(P)

= Case 2: XUYUWCcU (all variables)
= Let S=U-(XUYUW)

= S can be partitioned into two disjoint sets S; and
S, such that W separates XusS, and YUS, in H

= From case 1, we can derive (X,S; LY,S,|W)el(P)

= From iiill“iltion of independencies
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Factorization

= If His an I-map of P then P(Xl,...,xn)zénm[Di]

= Holds only for positive distributions P
= Hammerly-Clifford theorem

= Defer proof
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Relationship with Bayesian Network

= Bayesian Networks Jocel. = glob=
= Semantics defined via local independencies I, (G).
= Global independencies induced by d-separation

= Local and global independencies equivalent since one
implies the other

= Markov Networks a0t gl
= Semantics defined via global separation property I(H)

= Can we define the induced local independencies?
= We show two definitions (call them “Local Markov assumptions”™)

= All three definitions (global and two local) are equivalent only for
positive distributions P
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Pairwise Independencies

= Every pair of disconnected nodes are separated given
all other nodes in the network

= Formally: I,(H) = { (XLY | U-{X,Y}) : X—Y¢H}

Example:

(ALD|B,C,E)
(BLC|AD,E)
(DLE]|AB,C)
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Local Independencies

= Every node is independent of all other nodes given its
Immediate neighboring nodes in the network

Markov blank of X, MB(X)

= Formally: I,(H) = { (XLU-{X}-MB,(X) | MB,(X)) : XeH}

Example: QWG

(ALD|B,C,E)
(BLC|AD,E) Q MM = {B.C, E

(CLB|ADE)
(DLEA|B,C)
(ELD|AB,.C)
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Relationship Between Properties

Let I(H) be the global separation independencies
Let I (H) be the local (Markov blanket) independencies
Let I,(H) be the pairwise independencies

For any distribution P:
= I(H) 2> I,(H)
= The assertion in 1, (H), that a node is independent of all other nodes
given its neighbors, is part of the separation independencies since

there is no active path between a node and its non-neighbors given
its neighbors

= 1.(H) > 1p(H)
= Follows from the monotonicity of independencies in Markov
networks (if (XL Y|Z) and ZcZ’ then (X 1Y]|Z"))
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Relationship Between Properties

Let I(H) be the global separation independencies
Let I (H) be the local (Markov blanket) independencies
Let I,(H) be the pairwise independencies

For any positive distribution P:
= I(H) =2 I(H)
= Proof relies on intersection property for probabilities
(XLY]|Z,W) and (X LW]|Z,Y) > (X LY,W]2)
which holds in general only for positive distributions
= Details on the textbook

= Thus, for positive distributions
= I(H) & I, (H) < 1,(H)

= How about a non-positive distribution?
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The Need for Positive Distribution

= Let P satisfy H P
= A is uniformly distributed Q
@

= P satisfies 1,(H) )

= (BLLCJA), (ALCI|B)
(since each variable determines all others)

= P does not satisfy I, (H)

= (C_LA,B) needs to hold according to I, (H) but does not
hold in the distribution
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Constructing Markov Network for P

= Goal: Given a distribution, we want to construct a
Markov network which is an I-map of P

= Complete (fully connected) graphs will satisfy but
are not interesting

= Minimal I-maps: A graph G is a minimal 1-Map for
P if:
= Gisan I-map for P
= Removing any edge from G renders it not an I-map

= Goal: construct a graph which is a minimal I-map
of P
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Constructing Markov Network for P
= If P is a positive distribution, then I(H)<I1 (H) @

= Thus, sufficient to construct a network that satisfies 1,(H)

= Construction algorithm
= For every (X,Y) add edge if (X LY]U-{X,Y}) does not hold in P

s Theorem: network is minimal and unique I-map

= Proof:

. follows since I,(H) by construction and I1(H) by equivalence

.foIIows since deleting an edge implies (X LY|U-{X,Y})
But, we know by construction that this does not hold in P since we
added the edge in the construction process

. follows since any other I-map has at least these edges
and to be minimal cannot have additional edges
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Summary: Markov Network Representation

= Independencies in graph H
= Global independencies I(H) = {(XLY|Z) : sep,(X;Y|2)}
= Local independencies I (H) = { (XLU-{X}-MB,(X) | MB,4(X)) : XeH}
= Pairwise independencies I,(H) = { ( XLY | U - {X,Y}) : X—YegH}
= For any positive distribution P, they are equivalent.
= (Reverse) factorization theorem: I-map <> factorization
= Markov network factors
= Has to encompass cliques
= Maximal cliques, edge potentials
m Pairwise Markov network
= Node/ edge potentials
= Application in vision (image segmentation)

= What next?
= Log-linear model
= Log-transformation of potentials
= Features instead of factors
= Constructing Markov networks from Bayesian networks
= “Partially” directed graph (e.g. Conditional Random Fields)
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