Readings: K&F 4.1, 4.2, 4.3, 4.4



# **Undirected Graphical Models**

Lecture 4 – Apr 6, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

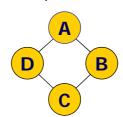
# Bayesian Network Representation

- Directed acyclic graph structure
  - Conditional parameterization
  - Independencies in graphs
  - From distribution to BN graphs
- Conditional probability distributions (CPDs)
  - Table
  - Deterministic
  - Context-specific (Tree, Rule CPDs)
  - Independence of causal influence (Noisy OR, GLMs)
  - Continuous variables
  - Hybrid models

CSE 515 – Statistical Methods – Spring 2011

# The Misconception Example

- Four students get together in pairs to work on HWs:
   Alice, Bob, Charles, Debbie
- Only the following pairs meet: (A&B), (B&C), (C&D), (D&A)
- Let's say that the prof accidentally misspoke in class
  - Each student may subsequently have figured out the problem.
  - In subsequent study pairs, they may transmit this newfound understanding to their partners.
- Consider 4 binary random variables
  - A, B, C, D: whether the student has the misconception or not.
- Independence assumptions?

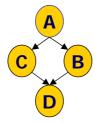


Can we find the P-map for these?

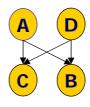
2

#### Reminder: Perfect Maps

- G is a perfect map (P-map) for P if I(P)=I(G)
- Does every distribution have a P-map?
  - No: some structures cannot be represented in a BN
    - Independencies in P:  $(A \perp D \mid B, C)$  and  $(B \perp C \mid A, D)$



 $(B \perp C \mid A,D)$  does not hold



 $(A \perp D)$  also holds

CSE 515 – Statistical Methods – Spring 2011

# Representing Dependencies

- $(A \perp D \mid B,C)$  and  $(B \perp C \mid A,D)$ 
  - Cannot be modeled with a Bayesian network.
  - Can be modeled with an undirected graphical models (Markov networks).

CSE 515 - Statistical Methods - Spring 2011

5

#### **Undirected Graphical Models (Informal)**

- Nodes correspond to random variables
- Edges correspond to direct probabilistic interaction
  - An interaction not mediated by any other variables in the network.
- How to parameterize?
- Local factor models are attached to sets of nodes
  - Factor elements are positive
  - Do not have to sum to 1
  - Represent affinities, compatibilities

| Α              | D     | π <sub>1</sub> [A,C] |
|----------------|-------|----------------------|
| a <sup>0</sup> | $d_0$ | 100                  |
| a <sup>0</sup> | $d^1$ | 1                    |
| a <sup>1</sup> | $d^0$ | 1                    |
| a <sup>1</sup> | $d^1$ | 100                  |



DB

| С              | D     | π <sub>3</sub> [C,D] |
|----------------|-------|----------------------|
| $c_0$          | $d^0$ | 1                    |
| $c_0$          | $d^1$ | 100                  |
| c <sup>1</sup> | $d^0$ | 100                  |
| C <sup>1</sup> | $d^1$ | 1                    |

B C π<sub>4</sub>[B,C] b<sup>0</sup> c<sup>0</sup> 100 b<sup>0</sup> c<sup>1</sup> 1 b<sup>1</sup> c<sup>0</sup> 1 b<sup>1</sup> c<sup>1</sup> 1000

CSE 515 – Statistical Methods – Spring 2011

#### **Undirected Graphical Models (Informal)**

- Represents joint distribution
  - Unnormalized factor

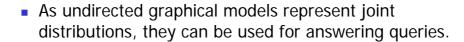
$$F(a,b,c,d) = \pi_1[a,b]\pi_2[a,c]\pi_3[b,d]\pi_4[c,d]$$

Probability

$$P(a,b,c,d) = \frac{1}{Z} \pi_1[a,b] \pi_2[a,c] \pi_3[b,d] \pi_4[c,d]$$



$$Z = \sum_{a,b,c,d} \pi_1[a,b] \pi_2[a,c] \pi_3[b,d] \pi_4[c,d]$$



CSE 515 – Statistical Methods – Spring 2011

7

#### **Undirected Graphical Models Blurb**

- Useful when edge directionality cannot be assigned
- Simpler interpretation of structure
  - Simpler inference
  - Simpler independency structure
- Harder to learn parameters/structures
- We will also see models with combined directed and undirected edges
- Markov networks

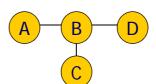
CSE 515 – Statistical Methods – Spring 2011

#### Markov Network Structure

- Undirected graph H
  - Nodes X<sub>1</sub>,...,X<sub>n</sub> represent random variables
- H encodes independence assumptions
  - A path X<sub>1</sub>-X<sub>2</sub>-...-X<sub>k</sub> is active if none of the X<sub>i</sub> variables along the path are observed
  - X and Y are separated in H given Z if there is no active path between any node x∈X and any node y∈Y given Z
    - Denoted sep<sub>H</sub>(X;Y|Z)

 $D \perp \{A,C\} \mid B$ 





**Global** independencies associated with H:

 $I(H) = \{(\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : sep_{H}(\mathbf{X}; \mathbf{Y} | \mathbf{Z})\}$ 

O

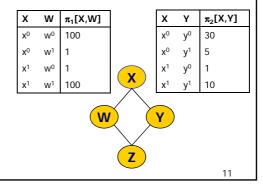
#### Relationship with Bayesian Network

- Bayesian network
  - Local independencies → Independence by d-separation (global)
- Markov network
  - Global independencies → Local independencies
- Can all independencies encoded by Markov networks be encoded by Bayesian networks?
  - No, counter example  $(A \perp B \mid C,D)$  and  $(C \perp D \mid A,B)$
- Can all independencies encoded by Bayesian networks be encoded by Markov networks?
  - No, immoral v-structures (explaining away)
- Markov networks encode monotonic independencies
  - If  $sep_H(X;Y|Z)$  and  $Z\subseteq Z'$  then  $sep_H(X;Y|Z')$

CSE 515 – Statistical Methods – Spring 2011

#### Markov Network Factors

- A factor is a function from value assignments of a set of random variables  $\bf D$  to real positive numbers  $\Re^+$ 
  - The set of variables **D** is the scope of the factor
- Factors generalize the notion of CPDs
  - Every CPD is a factor (with additional constraints)

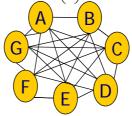


#### **Factors and Joint Distribution**

- Can we represent any joint distribution by using only factors that are defined on edges?
  - No! Compare # of parameters
  - Example: n binary RVs
    - Joint distribution has 2<sup>n</sup>-1 independent parameters
    - Markov network with edge factors has  $4\binom{n}{2}$  parameters

Needed:  $2^7-1 = 127!$ 

Edge parameters:  $4 \cdot ({}_{7}C_{2}) = 84$ 



Factors introduce constraints on joint distribution

CSE 515 – Statistical Methods – Spring 2011

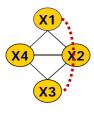
#### Factors and Graph Structure

- Are there constraints imposed on the network structure H by a factor whose scope is **D**?
  - Hint 1: think of the independencies that must be satisfied
  - Hint 2: generalize from the basic case of |**D**|=2

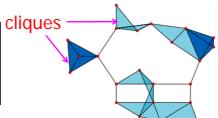


The induced subgraph over **D** must be a clique (fully connected)

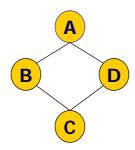
**Why?** otherwise two unconnected variables may be independent by blocking the active path between them, contradicting the direct dependency between them in the factor over **D** 

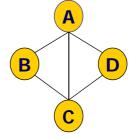


| X1,X2,X3,X4 | D[x1,x2,x3,x4] |
|-------------|----------------|
| (F,F,F,F)   | 100            |
| (F,F,F,T)   | 5              |
| (F,F,TF)    | 3              |
| (F,F,T,T)   | 100            |



# Markov Network Factors: Examples





#### Maximal cliques

- {A,B}
- {B,C}
- {C,D}
- {A,D}

#### Maximal cliques

- {A,B,C}
- {A,C,D}

CSE 515 – Statistical Methods – Spring 2011

#### Markov Network Distribution

- A distribution P factorizes over H if it has:
  - A set of subsets D<sub>1</sub>,...D<sub>m</sub> where each D<sub>i</sub> is a complete (fully connected) subgraph in H
  - Factors  $\pi_1[\mathbf{D}_1], \dots, \pi_m[\mathbf{D}_m]$  such that

$$P(X_1,...,X_n) = \frac{1}{Z} f(X_1,...,X_n) = \frac{1}{Z} \prod \pi_i[\mathbf{D}_i]$$

where un-normalized factor:  $f(X_1,...,X_n) = \prod \pi_i[\mathbf{D}_i]$ 

$$Z = \sum_{X_1,...,X_n} f(X_1,...,X_n) = \sum_{X_1,...,X_n} \pi_i[\boldsymbol{D}_i]$$

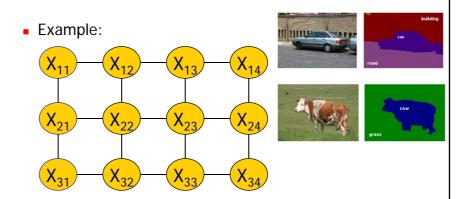
- Z is called the partition function
- P is also called a Gibbs distribution over H

CSE 515 – Statistical Methods – Spring 2011

15

#### Pairwise Markov Networks

- A pairwise Markov network over a graph H has:
  - A set of **node potentials** {π[X<sub>i</sub>]:i=1,...n}
  - A set of edge potentials  $\{\pi[X_i, X_i]: X_i, X_i \in H\}$



CSE 515 - Statistical Methods - Spring 2011

#### Logarithmic Representation

- We represent energy potentials by applying a log transformation to the original potentials
  - $\pi[\mathbf{D}] = \exp(-\varepsilon[\mathbf{D}])$  where  $\varepsilon[\mathbf{D}] = -\ln \pi[\mathbf{D}]$
  - Any Markov network parameterized with factors can be converted to a logarithmic representation
  - The log-transformed potentials can take on any real value
  - The joint distribution decomposes as

$$P(X_1,...,X_n) = \frac{1}{Z} \exp \left[ -\sum_{i=1}^m \varepsilon_i [\boldsymbol{D}_i] \right]$$
Log P(X) is a linear function.

CSE 515 - Statistical Methods - Spring 2011

17

#### I-Maps and Factorization

- Independency mappings (I-map)
  - I(P) set of independencies ( $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$ ) in P
  - I-map independencies by a graph is a subset of I(P)
- Bayesian Networks
  - Factorization and reverse factorization theorems
    - G is an I-map of P iff P factorizes as  $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i \mid Pa(X_i))$
- Markov Networks
  - Factorization and reverse factorization theorems
    - H is an I-map of P iff P factorizes as  $P(X_1,...,X_n) = \frac{1}{Z} \prod \pi_i[D_i]$

CSE 515 – Statistical Methods – Spring 2011

#### **Reverse Factorization**

- $P(X_1,...,X_n) = \frac{1}{Z} \prod \pi_i[D_i] \rightarrow H$  is an I-map of P
- Proof:
  - Let X,Y,W be any three disjoint sets of variables such that W separates X and Y in H
  - We need to show  $(\mathbf{X} \perp \mathbf{Y} | \mathbf{W}) \in I(P)$



- As W separates X and Y there are no direct edges between X and Y
  - → any clique in H is fully contained in X∪W or Y∪W
- Let  $I_X$  be subcliques in  $X \cup W$  and  $I_Y$  be subcliques in  $Y \cup W$  (not in  $X \cup W)$

$$P(X_1,...,X_n) = \frac{1}{Z} \prod_{i \in I_X} \pi_i[D_i] \prod_{i \in I_Y} \pi_i[D_i] = \frac{1}{Z} f(X,W) g(Y,W)$$

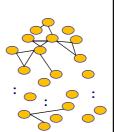
 $\rightarrow (X \perp Y | W) \in I(P)$ 

CSE 515 – Statistical Methods – Spring 2011



#### **Reverse Factorization**

- $P(X_1,...,X_n) = \frac{1}{Z} \prod \pi_i[D_i] \rightarrow H \text{ is an I-map of P}$
- Proof:
  - Let X,Y,W be any three disjoint sets of variables such that W separates X and Y in H
  - We need to show  $(\mathbf{X} \perp \mathbf{Y} | \mathbf{W}) \in I(P)$
  - Case 2: X∪Y∪W⊂U (all variables)
    - Let S=<u>U</u>-(X∪Y∪W)
    - S can be partitioned into two disjoint sets  $S_1$  and  $S_2$  such that W separates  $X \cup S_1$  and  $Y \cup S_2$  in H
    - From case 1, we can derive  $(\mathbf{X}_1, \mathbf{S}_1 \perp \mathbf{Y}_1, \mathbf{S}_2 | \mathbf{W}) \in I(P)$
    - From decomposition of independencies
      - $\rightarrow$  (X  $\perp$  Y | W)  $\in$  I(P)



CSE 515 – Statistical Methods – Spring 2011

#### **Factorization**

- If H is an I-map of P then  $P(X_1,...,X_n) = \frac{1}{Z} \prod \pi_i[D_i]$
- Holds only for positive distributions P
  - Hammerly-Clifford theorem
- Defer proof

CSE 515 - Statistical Methods - Spring 2011

21

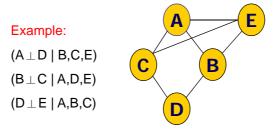
#### Relationship with Bayesian Network

- Bayesian Networks
  - Semantics defined via local independencies I<sub>L</sub>(G).
  - Global independencies induced by d-separation
  - Local and global independencies equivalent since one implies the other
- Markov Networks
  - Semantics defined via global separation property I(H)
  - Can we define the induced local independencies?
    - We show two definitions (call them "Local Markov assumptions")
    - All three definitions (global and two local) are equivalent only for positive distributions P

CSE 515 - Statistical Methods - Spring 2011

# Pairwise Independencies

- Every pair of disconnected nodes are separated given all other nodes in the network
- Formally:  $I_P(H) = \{ (X \perp Y \mid U \{X,Y\}) : X Y \notin H \}$



CSE 515 – Statistical Methods – Spring 2011

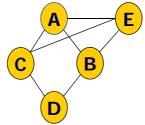
22

#### Local Independencies

- Every node is independent of all other nodes given <u>its</u> <u>immediate neighboring nodes</u> in the network
   Markov blank of X, MB<sub>H</sub>(X)
- Formally:  $I_L(H) = \{ (X \perp U \{X\} MB_H(X) \mid MB_H(X)) : X \in H \}$

# Example: $(A \perp D \mid B, C, E)$ $(B \perp C \mid A, D, E)$ $(C \perp B \mid A, D, E)$

 $(C \perp B \mid A,D,E)$   $(D \perp E,A \mid B,C)$  $(E \perp D \mid A,B,C)$ 



CSE 515 – Statistical Methods – Spring 2011

#### Relationship Between Properties

- Let I(H) be the global separation independencies
- Let I<sub>1</sub> (H) be the local (Markov blanket) independencies
- Let I<sub>p</sub>(H) be the pairwise independencies
- For any distribution P:
  - $I(H) \rightarrow I_1(H)$ 
    - The assertion in I<sub>L</sub>(H), that a node is independent of all other nodes given its neighbors, is part of the separation independencies since there is no active path between a node and its non-neighbors given its neighbors
  - $I_L(H) \rightarrow I_P(H)$ 
    - Follows from the monotonicity of independencies in Markov networks (if (X⊥Y|Z) and Z⊆Z' then (X⊥Y|Z'))

CSE 515 - Statistical Methods - Spring 2011

25

#### Relationship Between Properties

- Let I(H) be the global separation independencies
- Let I<sub>1</sub> (H) be the local (Markov blanket) independencies
- Let I<sub>P</sub>(H) be the pairwise independencies
- For any positive distribution P:
  - $I_p(H) \rightarrow I(H)$ 
    - Proof relies on intersection property for probabilities  $(X \perp Y | Z, W)$  and  $(X \perp W | Z, Y) \rightarrow (X \perp Y, W | Z)$  which holds in general only for positive distributions
    - Details on the textbook
  - Thus, for positive distributions
    - $I(H) \leftrightarrow I_L(H) \leftrightarrow I_P(H)$
  - How about a non-positive distribution?

CSE 515 – Statistical Methods – Spring 2011

#### The Need for Positive Distribution

- Let P satisfy
  - A is uniformly distributed
  - A=B=C



- P satisfies I<sub>P</sub>(H)
  - (B⊥C|A), (A⊥C|B)
     (since each variable determines all others)



- P does not satisfy I<sub>1</sub>(H)
  - (C \( \pm A, B \)) needs to hold according to I<sub>L</sub>(H) but does not hold in the distribution

CSE 515 – Statistical Methods – Spring 2011

27

# Constructing Markov Network for P

- Goal: Given a distribution, we want to construct a Markov network which is an I-map of P
- Complete (fully connected) graphs will satisfy but are not interesting
- Minimal I-maps: A graph G is a minimal I-Map for P if:
  - G is an I-map for P
  - Removing any edge from G renders it not an I-map
- Goal: construct a graph which is a minimal I-map of P

CSE 515 – Statistical Methods – Spring 2011

# Constructing Markov Network for P

- If P is a positive distribution, then  $I(H) \leftrightarrow I_L(H) \leftrightarrow I_P(H)$ 
  - Thus, sufficient to construct a network that satisfies I<sub>P</sub>(H)
- Construction algorithm
  - For every (X,Y) add edge if  $(X \perp Y | U \{X,Y\})$  does not hold in P
- Theorem: network is minimal and unique I-map
  - Proof:
    - I-map follows since I<sub>P</sub>(H) by construction and I(H) by equivalence
    - Minimality follows since deleting an edge implies (X⊥Y| U-{X,Y})
      But, we know by construction that this does not hold in P since we
      added the edge in the construction process
    - Uniqueness follows since any other I-map has at least these edges and to be minimal cannot have additional edges

CSE 515 – Statistical Methods – Spring 2011

29

# Constructing Markov Network for P

- If P is a positive distribution then
   I(H)↔I₁(H)↔IP(H)
  - Thus, sufficient to construct a network that satisfies I<sub>1</sub>(H)
- Construction algorithm
  - Connect each X to every node in the minimal set  $\mathbf{Y}$  s.t.:  $\{(X \perp U \{X\} \mathbf{Y} | \mathbf{Y}) : X \in H\}$
- Theorem: network is minimal and unique I-map

CSE 515 – Statistical Methods – Spring 2011

#### Markov Network Parameterization

- Markov networks have too many degrees of freedom
  - A clique over n binary variables has 2<sup>n</sup> parameters but the joint has only 2<sup>n</sup>-1 parameters
  - The network A—B—C has clique {A,B} and {B,C}
    - Both capture information on B which we can choose where we want to encode (in which clique)
    - We can add/subtract between the cliques
  - We can come up with infinitely many sets of factor values that lead to the same distribution
- Need: conventions for avoiding ambiguity in parameterization
  - Can be done using a canonical parameterization (see K&F 4.4.2.1)



DE 313 – Statistical Methods – Spring 2011

#### **Factor Graphs**

- From the Markov network structure we do not know whether parameterization involves maximal cliques or edge potentials
  - Example: fully connected graph may have pairwise potentials or one large (exponential) potential over all nodes
- Solution: Factor Graphs
  - Undirected graph
  - Two types of nodes
    - Variable nodes
    - Factor nodes
  - Parameterization
    - Each factor node is associated with exactly one factor
    - Scope of factor are all neighbor variables of the factor node

CSE 515 – Statistical Methods – Spring 2011

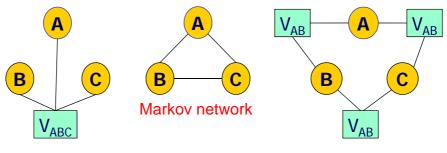






# **Factor Graphs**

- Example
  - Exponential (joint) parameterization
  - Pairwise parameterization



Factor graph for joint parameterization

Factor graph for pairwise parameterization

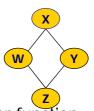
CSE 515 – Statistical Methods – Spring 2011

22

#### **Local Structure**

Factor graphs still encode complete tables

| ipicto tabio |                       |       |              |  |  |
|--------------|-----------------------|-------|--------------|--|--|
|              | Х                     | W     | $\pi_1[X,W]$ |  |  |
|              | x <sup>0</sup>        | $W^0$ | 100          |  |  |
|              | $\mathbf{x}^0$        | $w^1$ | 1            |  |  |
|              | $\mathbf{x}^{1}$      | $W^0$ | 1            |  |  |
|              | <b>x</b> <sup>1</sup> | $w^1$ | 100          |  |  |



- A feature  $\phi[\mathbf{D}]$  on variables  $\mathbf{D}$  is an indicator function that for some  $\mathbf{y} \in \mathbf{D}$ :  $\phi[\mathbf{D}] = \begin{cases} 1 & \text{when } x = w \\ 0 & \text{otherwise} \end{cases}$
- A distribution P is a log-linear model over H if it has
  - Features  $\phi_1[D_1],...,\phi_k[D_k]$  where each  $D_i$  is a complete subgraph in H
  - A set of weights w<sub>1</sub>,...,w<sub>k</sub> such that

$$P(X_1,...,X_n) = \frac{1}{Z} \exp \left[ -\sum_{i=1}^k w_i \phi_i [\mathbf{D}_i] \right]$$

CSE 515 – Statistical Methods – Spring 2011

#### **Feature Representation**

- Several features can be defined on one clique
   → any factor can be represented by features, where in the most general case we define a feature and weight for each entry in the factor
- Log-linear model is more compact for many distributions especially with large domain variables
- Representation is intuitive and modular
  - Features can be modularly added between any interacting sets of variables

CSE 515 - Statistical Methods - Spring 2011

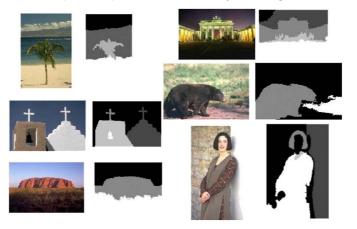
35

#### Markov Network Parameterizations

- Choice 1: Markov network
  - Product over potentials
  - Right representation for discussing independence queries
- Choice 2: Factor graph
  - Product over graphs
  - Useful for inference (later)
- Choice 3: Log-linear model
  - Product over feature weights
  - Useful for discussing parameterizations
  - Useful for representing context specific structures
- All parameterizations are interchangeable

# Domain Application: Vision

- The image segmentation problem
  - Task: Partition an image into distinct parts of the scene
  - Example: separate water, sky, background

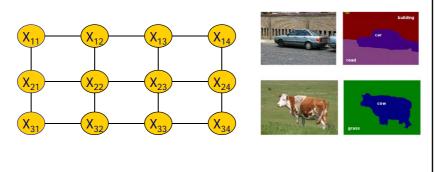


CSE 515 – Statistical Methods – Spring 2011

37

# Markov Network for Segmentation

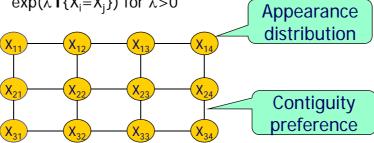
- Grid structured Markov network
- Random variable X<sub>i</sub> corresponds to pixel i
  - Domain is {1,...K}
  - Value represents region assignment to pixel i
- Neighboring pixels are connected in the network



CSE 515 – Statistical Methods – Spring 2011

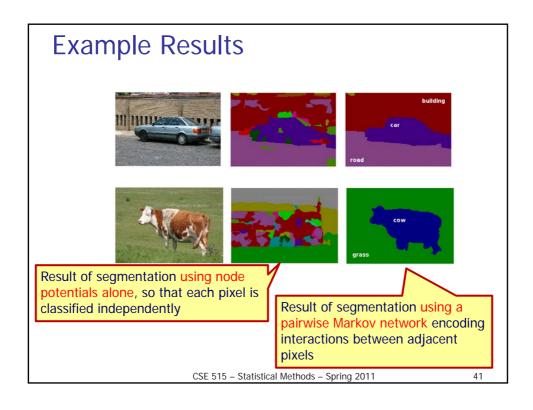
# Markov Network for Segmentation

- Appearance distribution
  - w<sub>i</sub><sup>k</sup> extent to which pixel i "fits" region k (e.g., difference from typical pixel for region k)
  - Introduce node potential exp(-w<sub>i</sub>\*1{X<sub>i</sub>=k})
- Edge potentials
  - Encodes contiguity preference by edge potential  $\exp(\lambda \mathbf{1}\{X_i=X_i\})$  for  $\lambda>0$



39

# Markov Network for Segmentation Appearance distribution Contiguity preference Solution: inference Find most likely assignment to X<sub>i</sub> variables CSE 515 – Statistical Methods – Spring 2011 Appearance distribution Contiguity preference



#### Summary: Markov Network Representation

- Independencies in graph H
  - Global independencies  $I(H) = \{(X \perp Y | Z) : sep_H(X; Y | Z)\}$
  - Local independencies  $I_1(H) = \{ (X \perp U \{X\} MB_H(X) \mid MB_H(X)) : X \in H \}$
  - Pairwise independencies  $I_P(H) = \{ (X \perp Y \mid U \{X,Y\}) : X Y \notin H \}$
  - For any positive distribution P, they are equivalent.
- (Reverse) factorization theorem: I-map ↔ factorization
- Markov network factors
  - Has to encompass cliques
  - Maximal cliques, edge factors
- Log-linear model
  - Features instead of factors
- Pairwise Markov network
  - Node/ edge potentials
  - Application in vision (image segmentation)
- What next?
  - Constructing Markov networks from Bayesian networks
  - Hybrid models (e.g. Conditional Random Fields)