Readings: K&F 9.2, 9.3, 9.4, 9.5

Exact Inference: Variable Elimination

Lecture 6-7 – Apr 13/18, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Let's revisit the *Student* Network

- Binary RVs
 - Coherence
 - Difficulty
 - Intelligence
 - Grade
 - SAT
 - Letter
 - Job
 - Happy
- Notations & abbreviations
 - : a random variable \leftarrow
 - : a set of random variables
 - (Val(J)): a set of values on J
 - (j) : a value on J
 - (J) : size of Val(J)
 - P(j) P(J=j)

- Assumptions
 - Local probabilistic models: table CPDs
 - Parameters and structure are given.

Inference Tasks in Student Network C (Conditional) probability queries P(I) or P(L=I) P(P(P) or P(H=P) P(I) or P(J=I) P(I)

Naïve Approach Use full joint distribution P(C,D,I,G,S,L,J,H) Computing $P(J=j^1)$ Computing P(I=i)(J=j) $P(j^1) = P(c^0, d^0, i^0, g^0, s^0, l^0, (j^1), h^0)$ $P(i^0,j^1) = P(c^0,d^0,i^0,g^0,s^0,l^0,j^1,h^0)$ + $P(c^0,d^0,i^0,g^0,s^0,l^0,j^1,h^1)$ + $P(c^0,d^0,i^0,g^0,s^0,l^0,j^1,h^1)$ + $P(c^0,d^0,i^0,g^0,s^0,l^1,j^1,h^0)$ $+\ P(c^0,d^0,\pmb{i^0},g^0,s^0,\pmb{I^1},\ \pmb{j^1},h^0)$ + $P(c^0,d^0,i^0,g^0,s^0,l^1,j^1,h^1)$ + P(c⁰,d⁰,i⁰,g⁰,s⁰,l¹, j¹,h¹) + P(c⁰,d⁰,i⁰,g⁰,s¹,l⁰, j¹,h⁰) + P(c⁰,d⁰,i⁰,g⁰,s¹,l⁰, j¹,h⁰) + P(c⁰,d⁰,i⁰,g⁰,s¹,l⁰, j¹,h¹) + P(c⁰,d⁰,i⁰,g⁰,s¹,l⁰, j¹,h¹) + P(c⁰,d⁰,i⁰,g⁰,s¹,l¹, j¹,h⁰) + P(c⁰,d⁰,i⁰,g⁰,s¹,l¹, j¹,h¹) + P(c0,d0,i0,g0,s1,l1, j1,h0) $+ \ P(c^0,d^0,\textbf{i}^0,g^0,s^1,l^1,\ \textbf{j}^1,h^1)$ + $P(c^0,d^0,i^0,g^1,s^0,l^0,j^1,h^0)$ $+\ P(c^0,d^0,\pmb{i^0},g^1,s^0,l^0,\ \pmb{j^1},h^0)$ + P(c⁰,d⁰,i⁰,g¹,s⁰,l⁰, j¹,h¹) $+\ P(c^0,d^0,\pmb{i^0},g^1,s^0,l^0,\ \pmb{j^1},h^1)$ + $P(c^0,d^0,i^0,g^1,s^0,l^1,j^1,h^0)$ + $P(c^0,d^0,i^0,g^1,s^0,l^1,j^1,h^0)$ $+\ P(c^0,d^0,i^0,g^1,s^0,l^1,\ j^1,h^1)$ $+\ P(c^0,d^0,\pmb{i^0},g^1,s^0,\pmb{I^1},\ \pmb{j^1},\pmb{h^1})$ $+\ P(c^0,d^0,i^0,g^1,s^1,l^0,\ j^1,h^0)$ $+\ P(c^0,d^0,\pmb{i^0},g^1,s^1,l^0,\ \pmb{j^1},h^0)$ + $P(c^0,d^0,i^0,g^1,s^1,l^0,j^1,h^1)$ + $P(c^0,d^0,i^0,g^1,s^1,l^0,j^1,h^1)$ + P(c⁰,d⁰,i⁰,g¹,s¹,l¹, j¹,h⁰) + P(c⁰,d⁰,i⁰,g¹,s¹,l¹, j¹,h⁰) + P(c⁰,d⁰,i⁰,g¹,s¹,l¹, j¹,h¹) + P(c⁰,d⁰,i⁰,g¹,s¹,l¹, j¹,h¹) Computational complexity: exponential blowup Exploiting the independence properties?

Naïve Approach • P(C,D,I,G,S,L,J,H) = P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L,S)P(H|G,J)Computing P(J) $P(i) = P(c^{0})P(d^{0}|c^{0}) P(i^{0}) [P(g^{0}|i^{0},d^{0}) P(s^{0}|i^{0})P(l^{0}|g^{0})P(j^{1}|l^{0},s^{0})P(h^{0}|g^{0})]$ Certain terms are + P(g⁰|i⁰,d⁰)P(s⁰|i⁰)P(l⁰|g⁰)P(j¹|l⁰,s⁰)P(h¹|g⁰,j¹ $+\ P(g^0|i^0,d^0)P(s^0|i^0)P(l^1|g^0)P(j^1|l^1,s^0)P(h^0|g^0,j^1)P(h^0$ repeated several $+ \ P(g^0|i^0,d^0)P(s^0|i^0)P(l^1|g^0)P(j^1|l^1,s^0)P(h^1|g^0,j^0)P(h^$ $+\ P(g^0|i^0,d^0)P(s^1|i^0)P(l^0|g^0)P(\textbf{j}^1|l^0,s^1)P(h^0|g^0,\textbf{j}^$ times $+ \ P(g^0|i^0,d^0)P(s^1|i^0)P(l^0|g^0)P(\textbf{j}^1|l^0,s^1)P(h^1|g^0,s^1)P$ $+ \ P(g^0|i^0,d^0)P(s^1|i^0)P(l^1|g^0)P(\textbf{j}^1|l^1,s^1)P(h^0|g^0,s^1|g^0)P(\textbf{j}^1|l^1,s^1)P(h^0|g^0,s^1|g^0,s^1|g^0,s^1|g^0)P(\textbf{j}^1|g^0,s^1$ $+ \ P(g^1|i^0,d^0)P(s^0|i^0)P(l^0|g^1)P(\textbf{j}^1|l^0,s^0)P(h^0|g^1,q^1)P(h^0|g^1,q^1)P$ $+\ P(g^1|i^0,d^0)P(s^0|i^0)P(l^0|g^1)P(\textbf{j}^1|l^0,s^0)P(h^1|g^1,\textbf{j}^1)P(\textbf{j}^1|l^0,s^0)P(h^1|g^1,\textbf{j}^1)P$ + $P(g^1|i^0,d^0)P(s^0|i^0)P(l^1|g^1)P(j^1|l^1,s^0)P(h^0|g^1,j^0)$ + $P(g^{1}|i^{0},d^{0})P(s^{0}|i^{0})P(l^{1}|g^{1})P(j^{1}|l^{1},s^{0})P(h^{1}|g^{1},j^{1})$ + $P(g^{1}|i^{0},d^{0})P(s^{1}|i^{0})P(l^{0}|g^{1})P(j^{1}|l^{0},s^{1})P(h^{0}|g^{1},j^{1})$ $+\ P(g^1|i^0,d^0)P(s^1|i^0)P(l^0|g^1)P(\textbf{j}^1|l^0,s^1)P(\textbf{h}^1|g^1,\textbf{j}^1)\\$ $+\ P(g^1|i^0,d^0)P(s^1|i^0)P(l^1|g^1)P(\textbf{j}^1|l^1,s^1)P(\textbf{h}^0|g^1,\textbf{j}^1)\\$ + P(g¹|i⁰,d⁰)P(s¹|i⁰)P(l¹|g¹)P(j¹|l¹,s¹)P(h¹|g¹,j¹) Exploiting the structure can reduce computation. Let's systematically analyze computational complexity.

Let's start with the simplest network ...

Exact Inference Variable Elimination

- Inference in a simple chain
 - Computing P(X₂)

All the numbers for this computation are in the CPDs of the original Bayesian network O operations

7

Exact Inference Variable Elimination

- Inference in a simple chain
 - Computing P(X₂)

Computing P(X₃)

$$P(X_{2}) = \sum_{x_{1}} P(x_{1}, X_{2}) = \sum_{x_{1}} P(x_{1}) P(X_{2} | x_{1})$$

$$P(X_{3}) = \bigcup_{x_{1}} P(X_{2} | x_{1}) P(X_{2} | x_{1})$$

- P(X₃|X₂) is a given CPD
- P(X₂) was computed above
- O() operations ←

Exact Inference: Variable Elimination

Inference in a general chain

D(TX11XT) 6(XT)

- Computing P(X_n)
 - Compute each $P(X_i)$ from $P(X_{i-1})$
 - $-(k^2)$ operations for each computation for X_i (assuming $|X_i| = k$)
 - O(k) operations for the inference
 - Compare to kⁿ operations required in summing over all possible entries in the joint distribution over X₁,...X_n
- Inference in a general chain can be done in linear time!

9

Exact Inference: Variable Elimination

Efficient Inference in Bayesnets

- Properties that allow us to avoid exponential blowup in the joint distribution
 - Bayesian network structure some subexpressions depend on a small number of variables
 - Computing these subexpressions and caching the results avoids generating them exponentially many times

Variable Elimination: Factors

- Inference algorithm defined in terms of factors
- Factors generalize the notion of CPDs
- A factor φ is a function from value assignments of a set of random variables D to real positive numbers R⁺
 - The set of variables **D** is the scope of the factor
- Thus, the algorithm we describe applies both to Bayesian networks and Markov networks

13

Operations on Factors I: Product

- Let (X, Y, Z) be three sets of disjoint sets of RVs, and let $\phi_1(X,Y)$ and $\phi_2(Y,Z)$ be two factors
- We define the $\underbrace{\text{factor product} \, \phi_1 x \phi_2 \, \text{operation}}_{\text{factor } \psi: \text{Val}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \rightarrow \mathfrak{B}}$ as

Operations on Factors II: Marginalization

- Let X be a set of RVs, Y ≠ X a RV, and φ(X,Y) a factor
- We define the factor marginalization of Y in X to be a factor $\psi: Val(\mathbf{X}) \rightarrow \mathfrak{B}$ as $\psi(\mathbf{X}) = \Sigma \phi(\mathbf{X}, \mathbf{Y})$
- Also called summing out

- In a Bayesian network, summing out all variables =
- In a Markov network, summing out all variables is the

More on Factors

- For factors ϕ_1 and ϕ_2 :
- Factors are commutative
- Products are associative
 - $(\phi_1 x \phi_2) x \phi_3 = \phi_1 x (\phi_2 x \phi_3)$
- If $X \notin Scope[\phi_1]$ (we used this in elimination above)

Inference in Chain by Factors

$$P(X_{4}) = \sum_{X_{1}} \sum_{X_{2}} \sum_{X_{3}} \underbrace{P(X_{1}, X_{2}, X_{3}, X_{4})}_{X_{2}}$$

$$= \sum_{X_{1}} \sum_{X_{2}} \sum_{X_{3}} \underbrace{\phi_{X_{1}} \times \phi_{X_{2}} \times \phi_{X_{3}} \times \phi_{X_{4}}}_{X_{2}}$$

$$= \sum_{X_{3}} \sum_{X_{2}} \underbrace{\phi_{X_{4}} \times \phi_{X_{5}}}_{X_{4}} \times \left(\sum_{X_{1}} \phi_{X_{1}} \times \phi_{X_{2}}\right)$$

$$= \sum_{X_{3}} \underbrace{\phi_{X_{3}}}_{X_{5}} \times \left(\sum_{X_{2}} \phi_{X_{3}} \times \left(\sum_{X_{1}} \phi_{X_{1}} \times \phi_{X_{2}}\right)\right) \leftarrow \underbrace{\phi_{X_{1}}}_{X_{2}}$$

Scope of ϕ_{X_3} and ϕ_{X_4} does not contain X_1

Scope of ϕ_{X_4} does not contain X_2

17

Sum-Product Inference

- Let Y be the query RVs and Z be all other RVs
- We can generalize this task as that of computing the value of an expression of the form:

- Call it <u>sum-product inference task</u>.
- Effective computation
 - The scope of the factors is limited.
 - → "Push in" some of the summations, performing them over the product of only a subset of factors

Sum-Product Variable Elimination

- Algorithm
 - Given an ordering of variables Z₁,...,Z_p
 - Sum out the variables one at a time
 - When summing out each variable Z.
 - Multiply all the factors φ's that mention the variable generating a product factor Ψ
 - Sum out the variable from the combined factor Ψ, generating a new factor f without the variable Z

Sum out

- Let X be a set of RVs, Y∉X a RV, and φ(X,Y) a factor
- We define the factor marginalization of Y in X to be a factor ψ : Val(X) $\rightarrow \Re$ as ψ (X)= $\Sigma_Y \phi$ (X,Y)
- Also called summing out

Page 14

1

Sum-Product Variable Elimination

- Theorem
 - Let X be a set of RVs
 - Let Y⊆X be a set of query RVs
 - Let Z=X-Y
 - → For any ordering α over **Z**, the above algorithm returns a factor ϕ (**Y**) such that ϕ (**Y**) = $\sum_{i=1}^{n} \phi^{i}$
- Bayesian network query P_G(Y)
 - F consists of all CPDs in G $F = \{\phi_{X_i}\}_{i=1}^n$
 - Each $\phi_{Xi} = P(X_i \mid Pa(X_i))$
 - Apply variable elimination for Z=U-Y (summing out Z)

Example – Let's consider a little more complex network...

A More Complex Network • Goal: P(J)• Eliminate: \widehat{C}_{l} , D_{l} , I_{l} ,

A More Complex Network

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $\underline{f_3(G,S)} = \sum_{\{I\}} \underline{\phi_I(I)\phi_S(S,I)f_2(G,I)}$

 $P(J) = \sum_{L,S,G,H,J,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_1(D)$

 $= \sum_{L,S,G,H,J} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,L) \phi_H(H,G,J) \phi_J(L) f_2(G,I)$

 $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$

A More Complex Network

P(J) Goal:

Eliminate: C,D,I,H,G,S,L

• Compute: $f_4(\widehat{\mathbb{Q}},\widehat{\mathcal{Y}}) = \sum_{H} \phi_H(H,G,J)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_1(D)$

 $=\sum_{L,S,G,H,J}\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{H}(H,G,J)\phi_{I}(I)f_{2}(G,I)$

 $=\sum_{L,S,G,H}\phi_J(J,L,S)\phi_L(L,G)\phi_H(H,G,J)f_3(G,S)$

 $= \sum_{L.S.G} \phi_J(J, L, S) \phi_L(L, G) f_3(G, S) f_2(G, I)$

A More Complex Network

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_5(J,L,S) = \sum_{G} (L,G) f_3(G,S) f_4(G,J)$

 $P(J) = \sum_{L,S,G,H,J,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $=\sum_{L,S,G,H,I}\phi_I(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_H(H,G,J)\phi_I(I)f_2(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$
- $= \sum_{L,S,G} \phi_{J}(J,L,S) \phi_{L}(L,G) f_{3}(G,S) f_{4}(G,J)$
- $=\sum_{I,S}\phi(J,L,S)f_{S}(J,L,S)$

D I S

27

A More Complex Network

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_6(J, L) = \sum_{S} \phi(J, L, S) f_5(J, L, S)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $=\sum_{L,S,G,H,I,D}\!\!\!\phi_I(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)f_I(D)$
- $=\sum_{L,S,G,H,I}\!\!\phi_{\scriptscriptstyle J}(J,L,S)\phi_{\scriptscriptstyle L}(L,G)\phi_{\scriptscriptstyle S}(S,I)\phi_{\scriptscriptstyle H}(H,G,J)\phi_{\scriptscriptstyle I}(I)f_2(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$
- $=\sum_{L,S,G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$
- $= \sum_{L,S} \phi(J,L,S) f_5(J,L,S)$
- $= \sum_{i} f_6(J, L)$

 $\phi_c(C)$ G S

A More Complex Network • Goal: P(J) • Eliminate: C,D,I,H,G,S,L• Compute: $f_7(J) = \sum_L f_6(J,L)$ $P(J) = \sum_{L,S,G,H,J,D,C} \phi_J(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)\phi_D(C,D)\phi_C(C)$ $= \sum_{L,S,G,H,J,D} \phi_J(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)f_1(D)$ $= \sum_{L,S,G,H,J,D} \phi_J(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_H(H,G,J)\phi_I(I)f_2(G,I)$ $= \sum_{L,S,G,H,J,D} \phi_J(J,L,S)\phi_L(L,G)\phi_H(H,G,J)f_3(G,S)$ $= \sum_{L,S,G,H,J,D} \phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$ $= \sum_{L,S,G,H,J,D} \phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$ $= \sum_{L,S,G,H,J,D} \phi_J(J,L,S)f_2(J,L,S)$ $= \sum_{L,S,G,H,J,D} \phi_J(J,L,S)f_3(J,L,S)$ $= \sum_{L,S,G,H,J,D} \phi_J(J,L,S)$ =

Inference With Evidence

- Let **Y** be the query RVs
- Let E be the evidence RVs and e their assignment
- Let Z be all other RVs (U-Y-E)
- The general inference task is

What's the complexity of variable elimination?

Complexity of Variable Elimination

- Start with (n factors (n=number of variables))
- Generate exactly one factor at each iteration
 → there are at most 2n factors

z pch(G,J)=(

- Generating factors (Say (N=max, |Val(X_i)))
 - At most $\Sigma_i Val(\mathbf{X}_i) | k_i \leq N \cdot 2n$ (since each factor is multiplied in exactly once and there are 2n factors)
- Summing out
 - $\Sigma[Val(X_i)] \le N:n$ (since we have n summing outs to do)
- Total work is linear in N and D, where N=max(Val(X))
- Exponential blowup can be in N_i which for factor i can be v^m if factor i has m variables with v values each
- Interpretation: <u>maximum scope size</u> is important.

35

Factors and Undirected Graphs

- The algorithm does not care whether the graph that generated the factors is directed or undirected.
 - The algorithm's input is a set of factors, and the only relevant aspect to the computational is the scope of the factors.
- Let's view the algorithm as operating on an undirected graph H.
 - For Bayesian networks, we consider the moralized Markov network of the original BNs.
- How does the network structure change in each variable elimination step?

- At each step we are computing $f_i = \sum_{i=1}^{n} \left(f_i(\mathbf{Z}_i) \right)$
- Plot a graph where there is an undirected edge
 Y if variables X and Y appear in the same factor
- Note: this is the Markov network of the probability on the variables that were not eliminated yet

37

VE as Graph Transformation

Goal: (P(J))Eliminate: (C,D,I,H,G,S,L)

 $P(J) = \sum_{L,S,G,H,J,D,C} \underbrace{\phi_{t}(J,L,S)\phi_{t}(L,G)\phi_{S}(S,I)\phi_{G}(G,I,D)\phi_{H}(H,G,J)\phi_{I}(I)\phi_{D}(C,D)\phi_{C}(C)}$

D I S

Goal: P(J)

■ Eliminate: C,D,I,H,G,S,L

• Compute: $f_1(D) = \sum_{C} \phi_C(C) / \phi_C(C, D)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $=\sum_{L,S,G,H,I,D}\!\!\!\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{G}(G,I,D)\phi_{H}(H,G,J)\phi_{I}(I)f_{1}(D) \ \ \longleftarrow$

VE as Graph Transformation

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_2(G,I) = \sum_{D} \phi_G(G,I,D) f_1(D)$

 $=\sum_{L,S,G,H,I}\phi_{J}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{H}(H,G,J)\phi_{I}(I)f_{2}(G,I))$

- Goal: P(J)
- Eliminate: C,D,I,H,G,S,L
- Compute: $f_3(G,S) = \sum_I \phi_I(I)\phi_S(S,I)f_2(G,I)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_1(D)$
- $= \sum_{L,S,G,H,I} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_H(H,G,J) \phi_I(I) f_2(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S)\phi_L(L,G)\phi_H(H,G,J) f_3(G,S)$

C fill edge
D G S

11

VE as Graph Transformation

- Goal: P(J)
- Eliminate; C,D,I,H,G,S,L
- Compute: $f_4(G,J) = \sum_{H} \phi_H(H,G,J)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $=\sum_{L,S,G,H,I,D}\!\!\!\!\phi_J(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)f_I(D)$
- $=\sum_{L,S,G,H,F}\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{H}(H,G,J)\phi_{I}(I)f_{2}(G,I)$
- $=\sum_{L,S,G,H} \phi_J(J,L,S)\phi_L(L,G)\phi_H(H,G,J)f_3(G,S)$
- $=\sum_{L.S.G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_5(J, L, S) = \sum_G \phi_L(L, G) f_3(G, S) f_4(G, J)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $=\sum_{L,S,G,H,I}\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{H}(H,G,J)\phi_{I}(I)f_{2}(G,I)$
- $= \sum_{L,S,G} \phi_{J}(J,L,S) \phi_{L}(L,G) f_{3}(G,S) f_{4}(G,J)$
- $= \sum_{I \in S} \phi(J, L, S) f_5(J, L, S)$

12

VE as Graph Transformation

■ Goal: P(J)

■ Eliminate: C,D,I,H,G,S,L

• Compute: $f_6(J,L) = \sum_S \phi(J,L,S) f_5(J,L,S)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_I(D)$
- $=\sum_{L,S,G,H,I}\!\!\phi_{\scriptscriptstyle J}(J,L,S)\phi_{\scriptscriptstyle L}(L,G)\phi_{\scriptscriptstyle S}(S,I)\phi_{\scriptscriptstyle H}(H,G,J)\phi_{\scriptscriptstyle I}(I)f_2(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$
- $=\sum_{L,S,G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$
- $= \sum_{L,S} \phi(J,L,S) f_5(J,L,S)$
- $=\sum_{i}f_{6}(J,L)$

C D I S

4.4

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_7(J) = \sum_L f_6(J, L)$

 $P(J) = \sum_{L,S,G,H,J,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $=\sum_{L,S,G,H,I,D}\!\!\phi_I(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)f_1(D)$

 $=\sum_{L,S,G,H,I}\!\!\!\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{H}(H,G,J)\phi_{I}(I)f_{2}(G,I)$

 $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$

 $=\sum_{L,S,G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$

$$\begin{split} &= \sum_{L,S} \phi(J,L,S) f_5(J,L,S) \\ &= \sum_L f_6(J,L) \end{split}$$

 $= f_7(J)$

The Induced Graph

- The induced graph $I_{F,\alpha}$ over factors F and ordering α :
 - Union of all of the graphs resulting from the different steps of the variable elimination algorithm.
 - (X_i and X_i) are connected if they appeared in the same factor throughout the VE algorithm using α as the ordering

The Induced Graph

- The induced graph $I_{F\alpha}$ over factors F and ordering α :
 - Undirected
 - X_i and X_j are connected if they appeared in the same factor throughout the VE algorithm using α as the ordering
- The width of an induced graph width () is the number of nodes in the largest clique in the graph minus 1
 - Minimal induced width of a graph K is min width (I_{K a})
 - Minimal induced width provides a lower bound on best performance by applying VE to a model that factorized on K
- How can we compute the minimal induced width of the graph, and the elimination ordering achieving that width?
 - No easy way to answer this question.

47

The Induced Graph

- Finding the optimal ordering is NP-hard
- Hopeless? No, heuristic techniques can find good elimination orderings
- Greedy search using heuristic cost function
 - We eliminate variables one at a time in a greedy way, so that each step tends to lead to a small blowup in size.
 - At each point, find the node with smallest cost
 - Possible costs: <u>number of neighbors in current graph</u>, neighbors of neighbors, number of filling edges

Inference should be efficient for certain kinds of graphs ...

Elimination on PolyTrees

- PolyTree Bayesian network ←
 - At most one path between any two variables
- Theorem: inference is linear in the network representation size

For a fixed graph structure, is there any way to reduce the induced width?

