Readings: K&F 9.2, 9.3, 9.4, 9.5

Exact Inference:
? Variable Elimination

Lecture 6-7 — Apr 13/18, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Let's revisit the Student Network

= Binary RVs
= Coherence

= Difficulty

= Intelligence

= Grade

= SAT

Letter
Job

Happy

: a random variable <
:_a set of random variables
: a set of values on J

:avalue onJ

= Assumptions
= Local probabilistic models: table CPDs
= Parameters and structure are given.




Inference Tasks in Student Network

= (Conditional) probability queries
= (P(IY) or P(L=IY)
Q = (P(h% or P(H=ho)

= (PGYor PU=jY)
©® O _

GG, i) or PO=]
‘
© Query RV(s)
Qo

———

= How to compute the probabilities?
= Use joint distribution P(C,D,1,G,S,L,J,H) <=

Naive Approach

= Use full joint distribution P(C,D,I,G,S,L,J,H
. Computing = Computing @@

P(") = P(c?,d%,i%,g%s°,I°)

+ P(CD’dD'iD’gD'SDJD’ jl,hl)
+ P(CD’dD'iD’gD'SDJl’ jl,hD)
+ P(CD’dD'iD’gD'SDJl’ jl,hl)
+ P(CD’dD'iD’gD'SIJD’ jl,hD)
+ P(CD’dD'iD’gD'SIJD’ jl,hl)
+ P(CD’dD'iD’gﬂvlel’ jl,hD)
+ P(CD’dD'iD’gﬂvlel’ jl,hl)
+ P(CD’dD'iD’glvsﬂJD’ jl,hD)
+ P(CD’dD'iD’glvsﬂJD’ jl,hl)
+ P(CD’dD'iD’glvsﬂJl’ jl,hD)
+ P(CD’dD'iD’glvsﬂJl’ jl,hl)
+ P(CD’dD'iD’glvleD’ jl,hD)
+ P(CD’dD'iD’glvleD’ jl,hl)
+ P(CD’dD'iD’glvlel’ jl,hD)
+ P(CD’dD'iD’glvlel’ jl,hl)
+ .. .

+ P(coydovioygoszJOY jl,hl)
+ p(coydovioygovsovpy jl,hO)
+ p(coydovioygovsovpy jl,hl)
+ P(coydovioygovsl'pY jl,hO)
+ P(coydovioygovsl'pY jl,hl)
+ P(coydovioygovsl'pY jl,hO)
+ P(coydovioygovsl'pY jl,hl)
+ P(coydovioyglszJOY jl,hO)
+ P(coydovioyglszJOY jl,hl)
+ p(coydovioyglvsovpy jl,hO)
+ p(coydovioyglvsovpy jl,hl)
+ P(coydovioyglvsl'pY jl,hO)
+ P(coydovioyglvsl'pY jl,hl)
+ P(coydovioyglvsl'pY jl,hO)
+ P(coydovioyglvsl'pY jl,hl)
+ .. :

P({°,j") = P(c%,d°,i%,g%s%,, j*,h°) ?

= Computational complexity: exponential blowup
= Exploiting the independence properties? <—




Naive Approach
(74

v

= P(C,D,I,G,S,L,J,H) = .
P(C)P(D|C)P(I)P(G|I,DP(L|G)P(J|L,S)P(H|G,J)

= Computing P(J)
PQ) =epie) PEF [ P(@1.0%) PISIOP(IGIPEHI POl

T PPl dP(R[OPEIGRGIRP(eey  Certain terms are
+ PGP0, dO)P(2 )P (I |gO)P ([ SO)P(] .

+ P(g]i%,d)P(s°[i0)P(11|g")PG I s0)P(ht|g repeated several
+ P(gli°,d)P(sHi0)P(|g")P( [P s)P(helg times

+ P(g]i°,d)P(sHi0)P(P|g)P( [P s)P(ht|g
+ P(gli°,d)P(sHi0)P(11|g)PG I s)P(helg
+ P(@li°,d)P(sH0)P(I1|gIPG! |1 s)P(hIg" )
+ P(gHi°,d)P(s°[i0)P(|g)P(! [P s0)P(helg? )
+ P(gHi°,d)P(s°[0)P(P|gPG! I s0)P(ht g )
+ P(gHi°,d)P(s°[i0)P(11|gPG! |1 sO)P(helg )
+ P(gHi°,d)P(s°[0)P(I1|gPG! I sO)P(htIgh )
+ P(gHi°,d)P(sH[0)P(PIgP(! P sP(Helg 1)
+ P(gH[i°,d)P(sH[0)P(PIgP(! I s)P(htIgh )
+ P(gHi°,d)P(sH[0)P(I1|gPG! I sP(Helg )
+ P(g![i°,dO)P(s )P (|gHPG! I sYP(hIgH ) J

= Exploiting the structure can reduce computation.
= Let's systematically analyze computational complexity.

Let’s start with the simplest
network ...




Exact Inference Variable Elimination

= Inference in a simple chain
= Computing P(X,)

D—@—@ M - 1)
e oG

All the numbers for this
computation are in the
of the original
esian network
) operations

VAN

Exact Inference Variable Elimination

= Inference in a simple chain
= Computing P(X,)

O—0—@)

. uting P(X5)
P(X,)=> P(x, X;) =2 P(x)P(X,|x) €~

e

= P(X5]X,) is a given CPD

= P(X, S co d above
= O( < ) }) operations &




Exact Inference: Variable Elimination

R )

pLk)
= Inference in a general chain D0ty

= Computing

= Compute eac m.
@ for each computation for@g_(assumln

O}’ operations for the inference

Compare .@ operations required in summing over all possible
entries in the joint distribution over X,,...X,

= Inference in a general chain can be done in linear time!

0™

Exact Inference: Variable Elimination
P(X, P(X., X,, X5, X,
\( ) xlévs%( D),

= 3 Y PX)P(X, [ X)P(X5 | X,)P(X, | X;)

1X2 XS

AA—
—ZP<x |x3)zP(x |x2)ZP<x1>P<x | X,)

10




Inference With a Loop
= Computing P(X,)

@@ (D,

= Differences

. Summationé//ére not
“pushed in” as far as

before
- Thelscape)of Pincludes _

two variables, not one.

= Depends on network
Strueture—

11

Efficient Inference in Bayesnets

= Properties that allow us to avoid exponential
blowup in the joint distribution

= Bayesian network structure — some'‘subexpressions

depend on a small number of variables

= Computing these subexpressions and caching the
results avoids generating them exponentially many
times

12




Variable Elimination: Factors

= Inference algorithm defined in terms of factors
Mo

« Factors generalize the notion of(CPDs)

o @is a function from value assignments of a set
of random variables D to real positive numbers R*

= The set of variables D is them

= Thus, the algorithm we describe applies both to
Bayesian networks and Markov networks

13

Operations on Factors |: Product

= Let e three sets of disjoint sets of RVs, and
let ¢,(X,Y) and ¢,(Y,Z) be two factors

= We define the factor producd b,X¢, Operation to be a
factor y:Val(X,Y,Z) >(9 as PlXix)
W(X,Y,2)=0,(X,Y),(Y,2) & = PPl )

X Yz |wperzl\
A (ﬁ

Xty
Xt oyt 0
Xt oyt o7t Y

14




Operations on Factors Il: Marginalization

. Let@be a set of RVs,@eX a RV, an a factor

We define Ftor marglnallzano of Yin Xto be a
factor y:¥al(X) X,

Ve
Also called summing out 4 PO(.)=§'

In a Bayesian network, summing out all variables =
= In a Markov network, summing out all variables is the

15

More on Factors

For factors ¢, and ¢,:

= (X, = G1Xd,

Factors are commutative g
- szvfb(x Y) z:sz(l)(X’Y))

Products are associative
n (01 Xdo)Xd3 = Gy X(PoXd3) i

(we used this in elimination above)
)X Zxdy <

16




Inference in Chain by Factors
PO =TT TP, X5 o Xa)
¢x1 ><¢)<2 X¢x3 X¢x4

- Xz p Scope of ¢y, and oy,

[Z¢x1 x¢XZJ._ does not contain X,

’ Scope of ¢, does
=§@X[Z¢xg x[Zq&l ¢D not contain X,
\jwiz\/\x;v*/\

17

Sum-Product Inference
= Let Y be the query RVs and Z be all other RVs

= We can generalize this task as that of computing
the value of an expression of the form:

off)]

s Call it sum- ct mference task.

= Effective computation
= The scope of the factors is limited. <

= - “Push in” some of the , performing them
over the product of only a subset of factors

18




Sum-Product Variable Elimination
= Algorithm X

Xow
¢
= Given an ordering of variable@

= Sum out the variables one at a time

= When summing out each variable Z

= Multiply all the(factors ¢'s that mention the
generating a product factor W

= Sum out the variable,from the comhined factor W, generating
a new factor £ without the v@riable

sum out T™~_

= Let X be a set of RVs, YeX a RV, and ¢(X,Y) a factor

= We define the(factor marginalization of Y in X to be a

factor y:Val(X) = % as y(X)= Z,h(X,Y)
N———

= Also called summing out Page 14

19

Sum-Product Variable Elimination

= Theorem
= Let X be a set of RVs
= Let YcX be a set of query RVs
s Let Z=X-Y

= > For any ordering o over Z, the ab ithm
returns a factor ¢(Y) such that C¢@) =>'TI¢ %
Z $'eF
= Bayesian network query P
= F consists of all CPDs in
= Each 4)2%): P(X,_| Pa(X)))
= Applylvariable elimination for Z=U-Y (summing out Z)

20




Example — Let’s consider a
little more complex network...

21

A More Complex Network
n Goal: L)

s Eliminate: C,D,I,H,G,S,L ¢

P(J) :ml L.S)P(LIG)P(S[1)P(G|1,D)P(H |G,J)P(1)P(C| D)@

P(9)= Z¢J(J,L,S)¢L(L,G)¢s(s,I)¢G(G,I,D)¢H(H,G,J)¢.(I)¢D(c,

22




A More Complex Network

= Goal: P@)
= Eliminate:(C,D,1,H,G,S.L
= Compute: fi(D)=>f(C),(C.D)

PI)= 24 .LS)(LG)(S,1)¢:(G,1,D)g, (H,G, )¢ (1

L,S.GH,1,DC

= Y 4,0.LA LGS ) (6.1, D), (H.6. 1) (1]1,D)] ¢

L,S,G,H,I,D

23

A More Complex Network

n Goal: PQ)
= Eliminate: C@,I,H,G S a1V G
= Compute: R 1)-= Q “

P)= 34,3, L.S) (L.G) (S, 1) (G, 1, D)gh, (H,G, 3)g, (1) (C. D). (C) @ e
= 340U )AL G (S, NalG,L D) (H .G, ) (D) o
= 34,3, LS (LG (S, 1) (H,G, g (1

LS.GH,I

24




A More Complex Network
n Goal: PJ)

= Eliminate: C,D,I,H,G,S,L

= Compute: &G'S)=%¢|(I)¢s(svI)fz(GrI)

PI)=  24,LS)(LG)(S,1)¢:(G,1,D)g (H,G,3)¢ ()¢ (C, D). (C)

2. 4,0,L.S) (L, G)¢s(5 15 (G, 1,D)¢, (H,G, )¢, (1) ,(D)

L,S,G,H,I,D

= Z¢J(J L,S)4, (L, G ? ¥, (H,G, J”

S 0L LG (H G,

25

A More Complex Network

a Goal: PQ) W‘\M\
= Eliminate: CD,I,H

= Compute: <— =

P(J)=

2.4, (3,L,9)4(L,G) (S, )¢ (G, 1, D)y, (H,G, )4, (1) (C, D) (C)

2 4, (3,L,S)¢ (L.G)4s (S, )¢ (G, 1, D)y (H,G, ) (1) (D)

L,S,G,H,I,D

= 2 4,.LS) (LG (S, )¢y (H,G D¢ (NF,(G,1)

LS.GH,I

= 2 4,(,LS)4 (LG4, (H,G,I)f(G,S)
—

L,S,GH

- T40.LIALOILE i)

26




A More Complex Network

s Goal: P(J)
= Eliminate: C,D,1,H@,S,L

= Compute: fU.LS) =Z@@@

PO)= 24,.LS)(LG)(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

L,S,G,H,1,DC

= 2 4L (LG (S, 1) (G, 1,D)g, (H,G,3)4 (1)f,(D)

L,S,G,H,I,.D

= 2 4,.LS) (LG (S, )¢y (H,G D¢ (NF,(G, 1)

LS.GH,I

= 24,0, LS) (LG4 (H,G,I)f(G,S)

L,S,GH

= Z¢J (J, L,S)¢L(L,G)f3(G,S)f4(G,J)

L.S.G

=3 ¢@, L,S)lf;iJ L,Si )

27

A More Complex Network

n Goal: PJ)
= Eliminate: C,D,I,H,G,S,L
= Compute: f(0.L)=2¢0,L9S)fJ.LS)

PI)= 24,(,LS)4(LG)¢(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

=LLVSSVZZ:‘,%5YZY(CJ,L,S)¢L(L,G)¢S (S, ¢s (G, 1, D)4y, (H,G,3)¢, (1)1,(D)
= LYS‘EGY:H?;;(J,L,S)¢L(LiG)¢S(S, Dy (H,G,3)¢, ()F,(G,1)

= !;Z;f; (3,L,8)4.(L,G)4, (H,G, 1)1,(G, S)

= iéw,L,S)¢L(L|G)f3<e,3)f4<e,3)

=§(;(J,L,S)f5(.],L,S)

=LZf:fG(J,L)

28




A More Complex Network

n Goal: PQ)
= Eliminate: C,D,I,H,G,S,L
= Compute: ()= f0.L)

PO)= 24,(J,L,S)4(LG)¢(S,1)¢s(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

L,S,G,H,1,DC

= 2 4L (LG)(S, 1) (G.1,D)g, (H,G,3)4 (1)f,(D)

L,S,G,H,I,D

= 2 4,.LS) (LG (S, ¢ (H,G D¢ (NF,(G, 1)

LSGH,I

= 2 4,(,LS) (LG4, (H,G,I)f(G,S)

L,S,GH

= Z¢J (J, L,S)¢L(L,G)f3(G,S)f4(G,J)

#(J,L,8)f,(3,L,S)

2
=3 ,(.L)

29

A More Complex Network

n Goal: PJ)
= Eliminate: G,I,S,L,H,C,D (different ordering)
\NeAmmrmen———

PO)= 2 4,J,LS)4(LG)(S,1)¢:(G,1,D)g, (H,G,I)¢, (1) (C, D). (C)

G,I,S,L,H,C.D

= Z%(J,L,S)%(S,|)¢|(|)¢D(C,D)¢C(C

1,S,LH,CD

- Y 4,0,L.8) (€ DI CILD.LS, I, HD

S,LLH.C,.D

= 2 #(C.D)¢(C)f;(D, L, I, H)
= 2 #,(C.D)¢.(C)f,(D,J . H)

H,C.D

= Z¢D(C! D)¢C(C)f5(D,J)
=Y f,(D,J)f,(D,J)

- ordering matters <«

= f7(~])

30




Inference With Evidence

Computing PY <« pYes
Let Y be the query RVs rE=e)

Let E be the evidence RVs and e their assignment
Let(Z be all other Rvs (U-Y-E)

= The general infefence task is
E=&
,e) X|E=e
#(e) YZ}XfL[aﬁX.E:e

31

Inference With Evidence

= Goal: P@ @@ <

= Eliminate: C,D,G
= Below, comput

L)
PU.hi)= Y\ (J,L.S)h (L.G)o S,i)¢G(GD i), (C, D)4 (C)

L,S,G,DC

= 2.4,(3,L.S)4 (L,G)gs(S.i)¢s (G.i, D)y (0, G, 3)¢, () f,(D)

L,S,G,D

= 2 4,(3,L.S)4 (L.G)4 (5.4 (.G, D), (DF,(G. )

L.S.G

=24, L,S) (S, f,(L,3)
A (W)

= Differences \/
=£Q) = Lessn
eliminated ({/)an re excluded)
= Scope of
-smaller-

32




What’s the complexity of
variable elimination?

33

CO m p | eX I ty Of VE . ggtgff‘-‘:nsat:z;f‘?f:grgrﬂc;d:;t dyxd, operation to be a
_ T WY DN LS (e )
= Variable elimination con| ——~ =9

v Ja vl | vz legxa”] 7 g
L

= Generating the factors f (- G—= 21~ I

-

. MM e R
Summing out v s v v |u

Page 13
st U

- * - ’r\l/_
= Generating the factothrough factor

product operation -
= Le be the scope of f.
= Each entry requirem iplicat 0 generate
= —> Generating facto

= Summing out < L
= Addition operatiofis, at mos Z=

n Per factor: Q(kN) where@zmax, Val(X; |,@:max

34




Complexity of Variable Elimination
= Start with(n factors {n=numher of variabies)

= Generate exactly one factor at each iteration g PCH(&. J)= (
> there are &t mosb2n factors

= Generating factors (Say{(N

= At mostVi)lk x@@ L N-2n)(since each factor is multiplied in

exactly once and thefe are 2n factors)
= Summing out

acon@s

g (since we have n summing outs to do)

((Nn) e
= Total work isJinear in , where

= Exponential blowup can be in N; which for factor i can b if
factor i hasitK v values each>
on:(maximum scope sizDs important
= Interpretation:Umaximum D e/is important.

35

Factors and Undirected Graphs

= The algorithm does not care whether the graph that
generated the factors is directed or undirected.
= The algorithm’s input is a set of factors, and the only relevant aspect

to the computational is the scope of the factors.

= Let’'s view the algorithm as operating on an undirected
graph H.

= For Bayesian networks, we consider the i rko
of the original BNs.

= How does the network structure change in each variable
elimination step?

36




VE as Graph Transformation v

= At each step we are computing f, = )@
QRS

= Note: this is the Markov network of the probability
on the variables that were not eliminated yet

37

VE as Graph Transformation

s Goal:

= Eliminate: C,D,I,H,G,S,L
\/‘W

PU)=  Y3.0.L,9)6 (L.G)4(S,1)4s(G, 1, D)y (H,G,3)g (1) (C, D). (C)

L,S.GH,1,DC

38




VE as Graph Transformation

s Goal: P(J)
= Eliminate: C,D,I,H,G,S,L

n Compute:

PO)= 24 .LS)(LG)(S,1)¢:(G,1,D)g, (H,G,3)¢ ()¢5 (C, D). (C)

L,S.GH,1,DC

= Z¢J(J,L,S)¢L(L,G)¢S(S,|)¢G(G,|,D)¢H(H,G,J)¢|(|)\£(,E>lé’

L,S,G,H,I,D

39

VE as Graph Transformation

s Goal: P(J)
= Eliminate: C,D,I,H,G,S,L

= Compute: &E&QZ%

PO)= 24.LS)(LG)(S,1)¢:(G,1,D)g, (H,G,3)¢ ()¢ (C, D). (C)

L,S,G,H,I,D.C

= Z¢J(J,L,S)¢L(L,G)¢S(S,|)H(H,G,J)¢|(|

L,S,G,H,I,D

= SHO.LOALEIA S (1.6, (6, D

L,S.GH,I

40




VE as Graph Transformation
n Goal: PJ)

= Eliminate: C,D,I,H,G,S,L

= Compute: u&&=;¢m%®nn@»

fill edge

PO)= 24 .LS)(LG)(S,1)¢:(G,1,D)g (H,G,3)¢ ()¢ (C, D). (C)
= 24,3, LS)h (LG (S, 1)¢s (G, 1, D)y (H,G,3)¢ (1)f,(D)
= 2 4,.LS)(L G (S, )¢y (H,G, )¢ (NF,(G,1)

- TH0LOALEMHEILEI

41

VE as Graph Transformation
s Goal: P(J)

= EliminatezC,D,1,H,G,S.L

= Compute: f4(G.J)=;¢H(H,G.J)

PO)= 24.LS)(LG)(S,1)¢:(G,1,D)g (H,G,3)¢ ()¢ (C, D). (C)
= 24,0, LS)h (LG (S, 1)¢s (G, 1, D)y (H,G,3)¢ (1)f,(D)

¢,(J,L,5)g.(L.G)gs (S, 1)y (H. G, 3)g, (NF,(G., 1)

4,(J,L,S)¢ (L,G)¢ (H,G,1)F,(G, S)g

= Z¢J , L,S)¢L(L,G)f3(G,S)f4(G,J)

L.S.G

42




VE as Graph Transformation

n Goal: PJ)
= Eliminate: C,D,I,H,G,S,L
= Compute: fs(J,L,S)=é¢L(L,G)f3(G,S)f4(G,J)

————

PO)= 24,(J,L,S)4(LG)¢(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

L,S,G,H,1,DC

= 2 4L (LG)(S, 1) (G.1,D)g, (H,G,3)4 (1)f,(D)

L,S,G,H,I,D

= 2 4,.LS) (LG (S, ¢ (H,G D¢ (NF,(G,1)

L,S.G.H,I

= 2 4,(,LS) (LG4, (H,G,I)f(G,S)

L,S,GH

= Z¢J (J, L,S)¢L(L,G)f3(G,S)f4(G,J)

L.S.G

=>¢(J,L,8)f(J,L,S)

43

VE as Graph Transformation

n Goal: PJ)
= Eliminate: C,D,I,H,G,S,L
= Compute: f,(3,1)=¢0,L,8)f,(J,L,S)

PO)= 24,(J,L,S)4(LG)¢(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

=LLVSSV(§%5Y;(CJ,L,S)¢L(L,G)¢S (S, ¢s (G, 1, D)4y, (H,G,3), (1)1,(D)
= LYS‘EGY:H?%(J,L,S)¢L(LiG)¢S(S, Dy (H,G,3)g, (NF,(G,1)

= Lgfj (3,L,8)4.(L,G)4, (H,G, 9)£,(G,S)

= iéw,L,S)¢L(L|G)f3<e,3)f4<e,3)

=§(;(J,L,S)f5(.],L,S)

=LZf:f6(J,L)

44




VE as Graph Transformation

s Goal: P(J)
= Eliminate: C,D,I,H,G,S,L
= Compute: f,(9)=> fQ,L)

PO)= 24,(J,L,S)4(LG)¢(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

L,S,G,H,1,DC

= 2 4L (LG)(S, 1) (G.1,D)g, (H,G,3)4 (1)f,(D)

L,S,G,H,I,D

= 2 4,.LS) (LG (S, ¢ (H,G D¢ (NF,(G,1)

L,S.G.H,I

= 2 4,(,LS) (LG4, (H,G,I)f(G,S)

L,S,GH

= Z¢J (J, L,S)¢L(L,G)f3(G,S)f4(G,J)

L.S.G

=>¢(J,L,8)f(J,L,S)

45

The Induced Graph

= The induced graph I- , over factors F and ordering o
. of aII of aphs resultlng from the different steps

me factor

Original
graph




The Induced Graph

= The induced graph I , over factors F and ordering o
= Undirected

= X and X; are connected if they appeared in the same factor
throughout the VE algorithm using o as the ordering

« The (idth of an induced qraph is the &mber

of nodes in the largest clique in the graph minus

» (Minimal induced widtD of a graph K is mi[@gidthglS Bl
= Minimal induced width provides a lower bound on best
performance by applying VE to a model that factorized o@

= How can we compute the minimal induced width of the
graph, and the elimination ordering achieving that width?
= No easy way to answer this question.
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The Induced Graph

= Finding the optimal ordering is NP-hard

= Hopeless? No, heuristic techniques can find good
elimination orderings

» Greedy search using heuristic cost function

= We eliminate variables one at a time in a greedy way, S0
that each step tends to lead to a small blowup in size.

= At each point, find the node with smalles

= Possible costs: number of neighbors in current graph,

eigh of neighb umber of filling edge
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Inference should be efficient
for certain kinds of graphs ...
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Elimination On Trees ngc

= Tree Bayesian network O
= Each variable hag one parent <~
= All factors involve at most two variables

= Elimination
= Eliminate leaf variables
= Maintains tree structure
« Induced width=1 % -J




Elimination on PolyTrees

= PolyTree Bayesian network <—
= At most one path between any two variables

s Theorem: inference is linear in the
network representation size
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For a fixed graph structure,
IS there any way to reduce
the induced width?
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