Readings: K&F 17.1, 17.2, 17.3, 17.4

Lecture 9 – Apr 25, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Parameter estimation

- Maximum likelihood estimation (MLE)
 - Parameter estimation based on observations
- Bayesian approach
 - Incorporate our prior knowledge

Maximum Likelihood Estimator

■ The *Coin* example – general case

- Training data (instances) $D = \langle x[1], ...x[m] \rangle$ (M_H heads and M_T tails)
- Parameters: P(X=h)=θ
- Goal: find $\theta \in [0,1]$ that predicts the data well
 - "Predicts the data well" = likelihood of the data given θ $L(\theta:D) = P(Q):\theta) = P(x[1],...,x[m])(\theta)$
 - MLE: Find θ maximizing likelihood $L(\theta:D) = \prod_{i=1}^{m} P(x[i] | x[1], ..., x[i-1], \theta) = \prod_{i=1}^{m} P(x[i] | \theta) = \theta^{M_H} (1-\theta)^{M_H} (1-\theta)^{M_H$
 - Equivalent to maximizing log-likelihood $l(\theta:D) = \log P(D:\theta) = M_H \log \theta + M_T \log(1-\theta)$
 - Differentiating the log-likelihood and solving for θ, we get that the maximum likelihood parameter: $\theta_{mle} = \arg\max l(\theta:D) = M_{H} + M_{T}$

ince

Sufficient Statistics

• For computing the parameter θ of the coin toss example, we only needed M_H and M_T since

$$L(\theta:D) = P(D:\theta) = \theta^{M_H} (1-\theta)^{M_T}$$

→ (M_{H}) and (M_{T}) are sufficient statistics (M_{T}) : HANT (M_{T}) : THINH

Sufficient Statistics

• A function s(D) is a sufficient statistic from instances to a vector in (R^k) if, for any two datasets D and D' and any $\theta \in \Theta$, we have

$$\sum_{x[i] \in Q} s(x[i]) = \sum_{x[i] \in D} s(x[i]) \implies L(D:\theta) = L(D':\theta)$$

- We often refer to the tuple $\sum_{x|i|=D} s(x[i])$ as the sufficient statistics of the data set D.
 - In coin toss experiment, M, and M, are sufficient statistics

5

Sufficient Statistics for Multinomial

- Y: multinomial, (values) (e.g. result of a dice throw)
- A sufficient statistics for a dataset D over Y is the tuple of counts (M₁,...M_i) > such that M_i is the number of times that the Y=(y) in D
- Likelihood function: $(L(D:\theta)) = \prod_{i=1}^k \theta_i^{(V)}$ where $\theta_i = P(Y = y^i)$
- MLE Principle: Choose ⊕ that maximize L(D:⊕)
- Multinomial MLE: $(\theta^i) = \underbrace{(M_i)^{-1}}_{\sum_{i=1}^m M_i}$

Sufficient Statistic for Gaussian

- Gaussian distribution: $X \sim N(Q, \sigma^2)$ Probability density function (pdf): $p(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
- Rewrite as $p(X) = \frac{1}{\sqrt{2\pi\sigma}}$
 - → sufficient statistics for Gaussian: <ME_mx[m], E_mx[m]
- Multinomial MLE: $\widehat{\mu} = \frac{1}{M} \sum_{m} x[m]$

$$\sigma = \sqrt{\frac{1}{M} \sum_{m} (x[m] - \mu)^2}$$

MLE for Table CPD BayesNets

Multinomial CPD

ial CPD
$$L_{Y}(D:\theta_{Y|X}) = \prod_{m} \theta_{y|m} \sum_{\mathbf{x} \in Val(X)} \mathbf{y}_{\mathbf{x}} \mathbf{x}_{\mathbf{x}} \mathbf{y}_{\mathbf{y}} \mathbf{x}_{\mathbf{y}} \mathbf{y}_{\mathbf{x}} \mathbf{y}_{\mathbf{y}} \mathbf{x}_{\mathbf{x}} \mathbf{y}_{\mathbf{y}} \mathbf{y}_{\mathbf{x}} \mathbf{y}_{\mathbf{y}} \mathbf{y}_{\mathbf{y}} \mathbf{y}_{\mathbf{x}} \mathbf{y}_{\mathbf{y}} \mathbf{y}_$$

■ For each value we we get an independent multinomial problem where the MLE is

MLE for Tree CPDs

Assume tree CPD with known tree structure

MLE for Tree CPD BayesNets

Tree CPD T, leaves I

$$\underbrace{\left(L_{Y}(D):\theta_{Y|X}\right)}_{Q(Y|X)} = \underbrace{\prod_{m}^{m} P(y[m] \mid \mathbf{x}[m]:\theta_{Y|X})}_{l \in Leaves(T)} = \underbrace{\prod_{y \in Val(Y)}^{m} \theta_{y|l}^{M[c_{l},y]}}_{l \in Leaves(T)}$$

■ For each value I∈Leaves(T) we get an independent multinomial problem where the MLE is

13

Limitations of MLE

- A thumbtack is tossed 10 times, and comes out 'head' 3 of the 10 tosses → Probability of head = 0.3
- A coin is tossed 10 times, and comes out 'head' 3 of the 10 tosses → Probability of head = 0.3
- A coin is tossed 1,000,000 times, and comes out 'head' 300,000 of the 1,000,000 tosses → Probability of head = 0.3
- Would you place the same bet on the next thumbtack toss as you would on the next coin toss?
- We need to incorporate prior knowledge
 - Prior knowledge should only be used as a guide

Bayesian Inference

- Assumptions
 - lacktriangle Given a fixed θ tosses are independent
 - If θ is unknown tosses are not marginally independent
 each toss tells us something about θ
- The following network captures our assumptions

15

Joint probabilistic model

Dirichlet Priors

• A Dirichlet prior is specified by a set of (non-negative) hyper-parameters $\alpha_1,...\alpha_k$ so that

 $\theta = [\theta_1, ..., \theta_k] \sim \text{Dirichlet}(\alpha_1, ..., \alpha_k)$ if

 Intuitively, hyper-parameters correspond to the <u>number of</u> <u>imaginary counts</u> before starting the coin toss experiment

starting the coin toss experiment
$$\theta = L\theta_1, \theta_2$$

Dirichlet Priors

 Dirichlet priors have the property that the posterior is also Dirichlet

Prior is Dir($\alpha_1,...\alpha_k$) $p(\theta) = \frac{1}{|Z|} \prod_k \theta_k^{\alpha_{k-1}}$

- Data counts are $M_1, ..., M_k$ D.
 Posterior is $Dir(\alpha_1 + M_1) ... \alpha_k + M_k$ $p(\theta | D) = \frac{1}{2} \prod_k \theta_k^{\alpha_k + M_k 1}$
- The hyperparameters $\alpha_1,...,\alpha_K$ can be thought of as "imaginary" counts from our prior experience
- Equivalent sample size = $\alpha_1 + ... + \alpha_K$
 - The larger the equivalent sample size the more confident we are in our prior

Effect of Priors (cont.)

 In real data, Bayesian estimates are less sensitive to noise in the data

General Formulation

- Joint distribution over D, θ $P(D,\theta) = P(D|\theta)P(\theta)$
- Posterior distribution over parameters

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

• P(D) is the marginal likelihood of the data

$$P(D) = \int_{\theta} P(D|\theta)P(\theta)d\theta$$

- As we saw, likelihood can be described compactly using sufficient statistics
- We want conditions in which posterior is also compact
 - E.g. Dirichlet priors

Conjugate Families

• A family of priors $P(\theta : \alpha)$ is conjugate to a model $P(\xi | \theta)$ if for any possible dataset D of i.i.d samples from $P(\xi | \theta)$ and choice of hyperparameters α for the prior over θ , there are hyperparameters α' that describe the posterior, i.e.,

 $P(\theta;\alpha') \propto P(D|\theta)P(\theta;\alpha)$

- Posterior has the same parametric form as the prior
- Dirichlet prior is a conjugate family for the multinomial likelihood
- Conjugate families are useful since:
 - Many distributions can be represented with hyperparameters
 - They allow for sequential update within the same representation
 - In many cases we have closed-form solutions for prediction

25

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- Instances are independent given the parameters
 - (x[m'],y[m']) are d-separated from (x[m],y[m]) given θ
- Priors for individual variables are a priori independent
 - Global independence of parameters $P(\theta) = \prod_{i} P(\theta_{X_i|P_d(X_i)})$

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- Posteriors of θ are independent given complete data
 - Complete data d-separates parameters for different CPDs
 - $P(\theta_X, \theta_{Y|X} \mid D) = P(\theta_X \mid D) P(\theta_{Y|X} \mid D)$
 - As in MLE, we can solve each estimation problem separately

2

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- \blacksquare Posteriors of θ are independent given complete data
 - Also holds for parameters within families
 - Note context specific independence between $\theta_{Y|X=0}$ and $\theta_{Y|X=1}$ when given both X and Y

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- Posteriors of θ can be computed independently
 - For multinomial $\theta_{X_i|pa_i}$ posterior is Dirichlet with parameters $(\alpha_{X_i=1|pa_i}+M[X_i=1|pa_i]),...,(\alpha_{X_i=k|pa_i}+M[X_i=k|pa_i])$
 - $P(X_{i}[M+1] = x_{i} | Pa_{i}[M+1] = pa_{i}, D) = \frac{\alpha_{x_{i}|pa_{i}} + M[x_{i}, pa_{i}]}{\sum_{x_{i}|pa_{i}} + M[x_{i}, pa_{i}]}$

20

Assessing Priors for BayesNets

- We need the $\alpha(x_i,pa_i)$ for each node x_i
- We can use initial parameters ⊕₀ as prior information
 - Need also an equivalent sample size parameter M'
 - Then, we let $\alpha(x_i,pa_i) = M' \cdot P(x_i,pa_i|\Theta_0)$
- This allows to update a network using new data
 - Example network for priors

- P(X=0)=P(X=1)=0.5
- P(Y=0)=P(Y=1)=0.5
- M'=1
- Note: $\alpha(x_0)=0.5 \ \alpha(x_0,y_0)=0.25$

Parameter Estimation Summary

- Estimation relies on sufficient statistics
 - For multinomials these are of the form M[x_i,pa_i]
 - Parameter estimation

$$\hat{\theta}_{x_i|pa_i} = \frac{M[x_i, pa_i]}{M[pa_i]} \qquad P(x_i \mid pa_i, D) = \frac{\alpha_{x_i, pa_i} + M[x_i, pa_i]}{\alpha_{pa_i} + M[pa_i]}$$
MLE
Bayesian (Dirichlet)

- Bayesian methods also require choice of priors
- MLE and Bayesian are asymptotically equivalent
- Both can be implemented in an online manner by accumulating sufficient statistics

33

Acknowledgement

 These lecture notes were generated based on the slides from Prof Eran Segal.

 ${\sf CSE~515-Statistical~Methods-Spring~2011}$