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Parameter estimation

= Maximum likelihood estimation (MLE)

= Parameter estimation based on observations
= Bayesian approach

= Incorporate our prior knowledge

A single variable General case

Bayesian network




Maximum Likelihood Estimator

= The Coin example — general case @
= X: result of a coin toss (@or@)
= Training data (instances) Qfﬁiﬂ;ﬂ;,&[@? (M,, heads and M tails)

» Parameters:

= Goal: find 6<[0,1] that predicts the data well
= “Predicts the data well” = likelihood of the data given 0

L(0:D) PR, M@ 119
= MLE: Find 6 maxirmizing likelihood/ ~ V 0
L(0:0)~ ] PAUstocts -], PO1110
= Equivalent to maximizing log-likelihood e et
1(6:D) :: M, log0+M, |og(1—9)71/
- T

» Differentiating the log-likelihood and solving for 6, we get that the
maximumEkeIihood parameter:  , _ argmax1(0: D) 5 ‘CE_D
%@{e:em 3

Sufficient Statistics

= For computing the parameter 0 of the coin toss example,
we only needed M,; and M; since

L(0:D)=P(D:0)=9"* 1-0)""

D HRHT

> @ and @are sufficient statistics -

Datasets

Statistics




Sufficient Statistics

= A fynction is a sufficient statistic from instances to a vector
in @ if, for any two datasets D and D’ and any 0®, we have

i]) = [ L(D:6)=L(D"6
> S(il) Xw%(x[']) = L(/\)/(\/)}

xiileB)

= We often refer to the tuple m as the sufficient statistics
R \/W/\/\NM
of the data set D. SR —

= In coin toss experiment,@ and@are sufficient statistics

Datasets

Statistics

Sufficient Statistics for Multinomial

= Y: multinomial,(&)value® (e.g. result of a dice throw)
X=6.

» A sufficient statisti a dataset D over Y is the
tuple of counts (KM;,...M)> such that M, is the
number of times that the Y@in D

= Likelihood function: Hkﬁ@ where 6, =P(Y =y')
VM ANY

» MLE Principle: Choose © that maximize L(D:®)
‘t’\\, V\’\/\w
.('D

= Multinomial MLE: : - K
M

=1




Sufficient Statistic for Gaussian

= Gaussian distribution: X ~N(.c?)
= Probability density function \(,899:

= Rewrite as|, , ;?é- e
o
- sufficient statistics for Gaussian: <M (P P
AUN-- ALHY \_/‘ st

» MLE Principle: Choose © that maximize L(D:®)

= Multinomial MLE: @Zm

:]{_Z(X[m] n)*

MLE for Bayesian Networks

= Parameters

ooy B <

= 0,0 r 0 1] 0 ’ 0 x0 xt
.y I.O b0 ohd YIIXI 9‘(0‘ 0.7 03
= Training data:
= tuples @@> m=1,...,M <«
= Likelihood fungtlon
Py eﬁ )
@
L(D:6) =[P ) -
VSWJ (mhyiml: o) i
Y
X e
x0 0.95 0.05
xt L0208

7‘ ) B

o< Se—
> Likelihood decom rms, one for
each variable ((decomposability of the likelihood function” .




MLE for Bayesian Networks
. Terms further decompose by CPPZ <ADA. 1>

P(y[m]| x[m]:0) = P(y[m]| x[m]: ij P(y[m]| x[m]: &)
H\/y\/\/ [m | H{) | ]

:x[m]{x

POMIXmI @[T POImIIXmI:a, )

mx[m] x° m:x[m]=xt
\/_\/_\

= By sufficient statistics

[T PQLm]idmI:6,, m <
mix[m]=x* 0(1‘ ‘lx
where M[x!,y!] is the number of data mstances in which X
takes the value x! and Y takes the value y!

0{0()

n MLE
"‘..e @

MLE for Bayesian Networks

= Likelihood for Bayesian T)eiéwor
(D:

Conditional likelihood
Q) or “Local likelihood”

\
> if@are disjoint then MLE can be computed by ~ (O
maximizing each local likelihood separately

10um = Onimnl  Bene LG KB
T MAa—.
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MLE for Table CPD BayesNets

= Multinomial CPD

= For each valu@we get an independent multinomial

problem where the MLE is
W&y I __

T

MLE for Tree CPDs

= Assume tree CPD with known tree structure

0,1 1,0 1,1
:HH X 6 0M[y \Z ,x])_(g ) 0M[y ,z ,x])_(e . 1M[y ,20.x]
Xy x|y*,z x|yt z
YTlp wz2amy’Zally  wwea)fy  wrea) & ¢
N Xy xy*,2°

Xyt 2t

X
M OY M :|.Y 0Y M l' :|.Y
:]i[[ex\y0 = X]j-(ex\yl 2° v X]).(Hx\y1 7 v X])
X m Y :

\/\/FJM

Terms for <y°,z%> and
<y%,z1> can be combined

l

Optimization can be done by leaves
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MLE for Tree CPD BayesNets

= Tree CPD T, leaves |

\MAAN A~ —

C(6/6,2) ~TTPOmIIxm:8,)
— L

QCM = H B,y | 1(xim)

_ M[c.y]

= 11 [ [16, }
leLeaves(T)| yeval(Y)
M, N AP

= For each value leLeaves(T) we get an independent
multinomial problem where the MLE is

Mlcl= > Mx,y']

x:1(x)=I
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Limitations of MLE ¥

= A thumbtack is tossed 10 times, and comes out *head’ 3 of the 10
tosses > Probability of head = 0.3 2~

N~ (W)

= A coin is tossed 10 times, and comes out ‘head’ 3 of the 10
tosses = Probability of head = 0.3

= A coin is tossed 1,000,000 times, and comes out *head’ 300,000
of the 1,000,000 tosses - Probability of head = 0.3

= Would you place the same bet on the next thumbtack toss as you
would on the next coin toss?

= We need to incorporate prior knowledge
= Prior knowledge should only be used as a guide

14




Bayesian Inference o400

» Assumptions
= Given a fixed 0 tosses are independent

» If 0 is unknown tosses are not marginally independent
— each toss tells us something about 0

= The following network captures our assumptions

15

Bayesian Inference

= Joint probabilistic model ®
P(x]....x[M].0) = F’(><[l] ----- X[l\/I]I6’)F’(¢9) %
=P)(1-0)~", (1 oy ;AU -
= Posterior probability over 6 @ 02041
Wkelingod.  Prior /
Z ) For a uniform prior,

posterior is the
----- normalized likelihood

P@UX,.... XIM 1)

Normalizing factor
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Bayesian Prediction

= Solve for uniform

variable " ‘lg = M—H':"ﬁ—
P(X[M +1] = x* | x[1]...., x[M]g “é ! / Wl—@)w

- Phatrg =X«

"Bayesian estimate’, —) “Imaginary
l’ﬁ@"«"ﬂ counts’;;

Example: Binomial Data

= Prior: uniform for(@in [0,1]
. (@’ ) o< |

>(®(0 |O))is proportional to the likelihood L(D:0) _&
P@| X[1],...X[M]) o« P(x[1],...x[M]| &)

(My,My) =

M
)_(9) 2 9& 'Cl"eh)

0 0.2 13.4 ' 0.6 ;\
= MLE for P(X=H) is(4/6) = 0.8 S o

= Bayesian prediction is 5/7 = 0.71 St ixl
MMl H D) =je-P<a|D>de=®=
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Dirichlet Priors

= A Dirichlet prior is specified by a set of (non-negative)
hyper-para meter so that

Dirichlet(a;,...ay) if

_:%Hﬁu where Y 6, =1, F(x)%'tdt
S rri( I
V()
-1 and ZzZ= :
Lp(e)&ﬂ \ )

oCs
= Intuitively, hyper-parameters correspond to the_number of
Imaginary counts before starting the coin toss experiment

Lo 0:06.6)
O . !
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Dirichlet Priors — Exam)ple b1 o
PG

Dirichlet@)p] —— &€~
Dirichlet(0.5,0:5)¥




Dirichlet Priors
= Dirichlet priors have the property that the posterior

is also Dirichlet
1
= Prior is Dir(a),...ay)

= Data counts areMy,...,M> |)- ‘ .
oy +M p(9| D)= %ML
i) GTS-12

= The hyperparameters ay,...,a, can be thought of as
“imaginary” counts from our prior experience

- Equivalent sample size =(oy..+oi)

= The larger the equivalent sample size the more confident
we are in our prior

21

Effect of Priors

o |E of P(X=H) after seeing data with MH

as a function of the sample size

pUH) 209




Effect of Priors (cont.)

= In real data, Bayesian estimates are less sensitive
to noise in the data

MLE —
Dirichlet
Dirichl —%M\‘VH

055)

N |
0.1 - V‘ [
5 10 15 20 25 30 35 40 45 50 ‘

1
< Toss Result
—|J—|—,-|_|-|_|_|_|-|_|-|_|_|_|_L
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General Formulation

Joint distribution over D,0
P(D,6)=P(D|9)P(6)
Posterior distribution over parameters

P(6|D)= P(D;(‘i);(g)

P(D) is the marginal likelihood of the data
P(D)=[P(D|6)P(6)do

= As we saw, likelihood can be described compactly using
sufficient statistics

= We want conditions in which posterior is also compact
« E.g. Dirichlet priors

24




Conjugate Families

= A family of priors P(0:a) is conjugate to a model P(&|0) if

for any possible dataset D of i.i.d samples from P(§|0)
and choice of hyperparameters o for the prior over 0,
there are hyperparameters o’ that describe the posterior,
i.e.,

P(0:a) o« P(D|0)P(0:0)

= Posterior has the same parametric form as the prior

= Dirichlet prior is a conjugate family for the multinomial likelihood

= Conjugate families are useful since:
= Many distributions can be represented with hyperparameters
= They allow for sequential update within the same representation
= In many cases we have closed-form solutions for prediction

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian

@ network
D D GamD
XD, QD

Con)

= Instances are independent given the parameters
« (X[m'],y[m’]) are d-separated from (x[m],y[m]) given 6
= Priors for individual variables are a priori independent

= Global independence of parameters P(6)=] [P(6 pxx,)
i 26




Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian

@ network
CENXCED, GamD
XD, QD

Con)

= Posteriors of 0 are independent given complete data
=« Complete data d-separates parameters for different CPDs
= P(6,, 6, | D)=P(6 | D)P(& | D)
= As in MLE, we can solve each estimation problem separately
27

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian
network

= Posteriors of 0 are independent given complete data
= Also holds for parameters within families

= Note context specific independence between 6y, and
Oy;x=1 When given both X and Y

28




Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian
network

= Posteriors of 6 can be computed independently
= For multinomial 6y,,, posterior is Dirichlet with parameters
(Oty=1jpa FMIX= 1[pa),- .+ (0t —ypa *MIXi=K(pay])
mpﬁl\/l[x Pa]

. P(Xi[M+1]=Xi|PQ[M+1]=pq’D)=Za +M[x, pa]
i Yxilpa i 2

Assessing Priors for BayesNets

= We need the a(x;,pa,) for each node x;

= We can use initial parameters ®, as prior
information
= Need also an equivalent sample size parameter M’
=« Then, we let a(x;pa;) = M’ - P(x;,pa;|©,)

= This allows to update a network using new data

= Example network for priors @
=« P(X=0)=P(X=1)=0.5
=« P(Y=0)=P(Y=1)=0.5
. M=1 @
= Note: a(Xy)=0.5 a(Xq,Y,)=0.25
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Case Study: ICU Alarm Network

= The “Alarm” network
= 37 variables

= Experiment
= Sample instances

= Learn parameters
= MLE
= Bayesian

Case Study: ICU Alarm Network

The distance between
the original CPDs and S —
the learned ones - ior, s

: Bayes w/ Uniform Prior, M'=5
Bayes w/ Uniform Prior, M'=10 ——
Bayes w/ Uniform Prior, M'=20 ——
Bayes w/ Uniform Prior, M'=50 ——

N

[y

o
o

KL Divergence
o
o

e
»

e
N

0 L J
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
M

= MLE performs worst
= Prior M’=5 provides best smoothing
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Parameter Estimation Summary

Estimation relies on sufficient statistics
= For multinomials these are of the form M[x;,pa;]
= Parameter estimation

~ _ M[Xi,pai] P(Xil pai,D):ax,,pal—i_M[xi’pai]

“P T M pay] Oy, +M[pa]
MLE Bayesian (Dirichlet)

Bayesian methods also require choice of priors
MLE and Bayesian are asymptotically equivalent

Both can be implemented in an online manner by
accumulating sufficient statistics
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