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Parameter estimation

= Maximum likelihood estimation (MLE)

= Parameter estimation based on observations
= Bayesian approach

= Incorporate our prior knowledge

A single variable General case

Bayesian network




Maximum Likelihood Estimator

= The Coin example — general case @
= X: result of a coin toss (head or tail)
= Training data (instances) D=<x[1],...X[m]> (M, heads and M tails)
= Parameters: P(X=h)=0

= Goal: find 6<[0,1] that predicts the data well
= “Predicts the data well” = likelihood of the data given 0

L(@:D)=P(D:8)=P(x[],...,x[m]: 9)
» MLE: Find 8 maximizing likelihood

L(@:D) =[], P([il| X[1]..... x[i -11,6) = [ ", P(x[i]| 6) = 6"+ (1— O)""

= Equivalent to maximizing log-likelihood
1(6:D)=logP(D:8)=M, logé+M; log(1-0)

» Differentiating the log-likelihood and solving for 6, we get that the

I\/lH
M, +M;

maximum likelihood parameter: 0., —argmax|(@: D) =

Sufficient Statistics

= For computing the parameter 0 of the coin toss example,
we only needed M,; and M; since

L(@:D)=P(D:0)=6"" (1-9)"

- M, and M; are sufficient statistics

Datasets

Statistics




Sufficient Statistics

= A function s(D) is a sufficient statistic from instances to a vector
in Rk if, for any two datasets D and D’ and any 6®, we have

S s(di) = Y s(i) = L(D:6)=L(D"6)

x[ileD x[ileD’

= We often refer to the tuple 2.S(IiD) as the sufficient statistics
of the data set D. e

= In coin toss experiment, M,; and M; are sufficient statistics

Datasets

Statistics

Sufficient Statistics for Multinomial

= Y: multinomial, k values (e.g. result of a dice throw)

= A sufficient statistics for a dataset D over Y is the
tuple of counts <M;,...M,> such that M, is the
number of times that the Y=y'in D

= Likelihood function: L(D:6)=]] 6" where 6 =P( =y

» MLE Principle: Choose © that maximize L(D:®)

= Multinomial MLE: ¢'= i




Sufficient Statistic for Gaussian

Gaussian distribution: X ~N(x,c?)

= Probability density function (pdf):  P(X)=

N2ro

. 1 1 ool
X)=——exp| - x +X =5 -
Rewrite as p(X) o p[ 257 X azj

- sufficient statistics for Gaussian: <M, x[m], >, x[m]*>>

1
Multinomial MLE: # =MZ x[m]

- \/ﬁZ(xtm]—u)z

m

MLE Principle: Choose ® that maximize L(D:0)

MLE for Bayesian Networks

= Parameters

= 0,0, 0,1

= Oyoix0r Oy11x0r By01x, By1ixt
= Training data:

» tuples <x[m],y[m]> m=1,...,.M
= Likelihood function:

L(D:09) = IM[ P(x[m], y[m]: &)

= ]m_! P(x[m]: 6x)P(yIm]| x[m]: &,x)

]__[ P(x[m]: 6y ))(H P(y[m]|x[m]: & x )J Xt
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- Likelihood decomposes into two separate terms, one for
each variable (“decomposability of the likelihood function”) .




MLE for Bayesian Networks
= Terms further decompose by CPDs:

]__[ P(y[m]| x[m]: )

[T POIMIIXmI:6) [ TPYImIIXIm]: 6y )

m:x[m]=x° m:x[m]=x*

[T POIMIIXmI:6,,.) [T P(yImIIxIm]:6,,)

m:x[m]=x° m:x[m]=xt

= By sufficient statistics
[T PGImIIXIm]:6,,)= 0y0|X1M[*1'V°1 .eyqxl“”[xﬂvn

m:x[m]=x*

where M[x!,y!] is the number of data instances in which X
takes the value x! and Y takes the value y!

MLE i
- MIX, T MK,y

0 o — =
YEOMDEYTTHMIX, YT MIX]

MLE for Bayesian Networks

= Likelihood for Bayesian network
L(G:D) = H P(x[M]: ®)
= HH P(x;[m]| Pa,[m]: ®,)

= H[H P(x[m]| Pg;[m]: Q)}

. Conditional likelihood
- H Li (0, - X, Pay )ﬁ or “Local likelihood”

> if elepa(xi) are disjoint then MLE can be computed by
maximizing each local likelihood separately
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MLE for Table CPD BayesNets

= Multinomial CPD

L, (D: 6Y|x) = H gy[mllx[m]

— M[x,y]
= 1 { [ 16, }
xeVal(X)| yevVal(Y)

= For each value xeX we get an independent multinomial
problem where the MLE is

~_Mxy']
M
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MLE for Tree CPDs

= Assume tree CPD with known tree structure

L(D: 0y, ;)
:HH P(x]| y,Z,HX‘YVZ)M[y.z,x]

7 x
M[y°,z% x M[y°,z% x My 2% x My 2t x
:H(H , [y ])(e . [y ])(9 . [y ])(e L [y ])
. x|y Xy xly*,z xly.z

M[y°,z°% x]+M[y°, 2% x M[y*,z% x My 2zt X
H(e , [y +M[y ])(9 - [y ])(9 . [y ])
x|y Xly,z xly*.z

[0, )., o) o, oot T
. xy° xy*,2° Xy*,zt
j

Terms for <y°,z%> and 0,01,0,6x11,0
<y9%,z'> can be combined

l K Ou01y1,21,0xt1y1,21 exolyl,zl'exnw

Optimization can be done by leaves 5




MLE for Tree CPD BayesNets

= Tree CPD T, leaves |

L (D:6,x) =[]P(yImlIx[m]:6,y)

m
= H B,y | 1(xim)
m

— MI[c.y]
= 11 [ [16, }
leLeaves(T)| yeval(Y)

= For each value leLeaves(T) we get an independent
multinomial problem where the MLE is

_M[Cwyi] M[c]= M[x, V'
=] [c] .(Z;. [xy']
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Limitations of MLE

= A thumbtack is tossed 10 times, and comes out *head’ 3 of the 10
tosses = Probability of head = 0.3

= A coin is tossed 10 times, and comes out ‘head’ 3 of the 10
tosses = Probability of head = 0.3

= A coin is tossed 1,000,000 times, and comes out *head’ 300,000
of the 1,000,000 tosses - Probability of head = 0.3

= Would you place the same bet on the next thumbtack toss as you
would on the next coin toss?

= We need to incorporate prior knowledge
= Prior knowledge should only be used as a guide

14




Bayesian Inference

» Assumptions
= Given a fixed 0 tosses are independent

» If 0 is unknown tosses are not marginally independent
— each toss tells us something about 0

= The following network captures our assumptions

o=l !, 1%

15

Bayesian Inference
= Joint probabilistic model ®

P(1]....xIM1,0) =P (x(l],.... XM ]| 6)P(6) GID Q2D - G

M

= P(G)H P(x[i]]0)
= P(0)6™ 1- )"

= Posterior probability over 6

Likelihood Prior

— : :
PO X1],.... x(M]) = - Ol XIM1 6)P(0) el
P(x[]....,xIM]) normalized likelihood
[ S

Normalizing factor

16




Bayesian Prediction

= Predict the data instance from the previous ones
POIM +1]| X[1,.... XM 1) O

= Solve for uniform prior P(0)=1 (for 0<6<1) and binomial
variable

1
P(x[M +1] = x* | x[1],..., X[M]) = 0-6M .(1-6)"
P(x[1]...., x[M ])!
"Bayesian estimate” ——>_ M, +1 “Imaginary
My +M; +2 counts”;;

Example: Binomial Data

= Prior: uniform for ¢in [0,1]
] P(e) =1

- P(0 |D) is proportional to the likelihood L(D:6)

P(@| x[1],...X[M]) oc P(X[1],...X[M]]| O)

(MHIMT) = (411)

02 0.4 0.6 0.8 1

« MLE for P(X=H) is 4/5 = 0.8
= Bayesian prediction is 5/7 = 0.71

P(X[M +1]=H |D) = je-P(a |D)do =§=o.7142
18




Dirichlet Priors

= A Dirichlet prior is specified by a set of (non-negative)
hyper-parameters a,...a, So that

0=[0,,...,0,] ~ Dirichlet(a,...0) if
. |O(9)=%H¢9k“kl where D 6, =1, F(x):TtHe‘tdt
k 0
and 7 1LT@)

F(Z.ilaq) '

= Intuitively, hyper-parameters correspond to the number of
imaginary counts before starting the coin toss experiment

Dirichlet Priors — Example

ST Dirichlet(1,1) =——

45 Dirichlet(2,2) ——

. Dirichlet(0.5,0.5) ——

Dirichlet(5,5) =—
4
35
3
2.5
2
1.5

=

0 0.2 0.4 0.6 0.8

N




Dirichlet Priors

= Dirichlet priors have the property that the posterior
is also Dirichlet i
= Prior is Dir(o,...ou) p(g)zgnek““l
= Data counts are M;,...,M, .
» Posterior is Dir(o; +My,...oq +M,)  p(@] D):?Hgkaﬁw_l

k

= The hyperparameters ay,...,a can be thought of as
“imaginary” counts from our prior experience

= Equivalent sample size = o+...+0

= The larger the equivalent sample size the more confident
we are in our prior
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Effect of Priors

= Prediction of P(X=H) after seeing data with M,,=0.2M,
M;=0.8M as a function of the sample size

Different strength o + o
Fixed ratio oy / ot




Effect of Priors (cont.)

= In real data, Bayesian estimates are less sensitive
to noise in the data

MLE —

Dirichlet(.5,.5)
0.6 Dirichlet(1,1) —
Dirichlet(5,5) —
Dirichlet(10,10) —

N

5 10 15 20 25 30 35 40 45 50

Toss Result

N 23

General Formulation

= Joint distribution over D,0
P(D,6)=P(D|6)P(6)

Posterior distribution over parameters

P(6| D) =—P(D;g);(‘9)

P(D) is the marginal likelihood of the data
P(D)=[P(D|6)P(6)do

As we saw, likelihood can be described compactly using
sufficient statistics

= We want conditions in which posterior is also compact
« E.g. Dirichlet priors

24




Conjugate Families

= A family of priors P(0:a) is conjugate to a model P(&|0) if

for any possible dataset D of i.i.d samples from P(§|0)
and choice of hyperparameters o for the prior over 0,
there are hyperparameters o’ that describe the posterior,
i.e.,

P(0:a) o« P(D|0)P(0:0)

= Posterior has the same parametric form as the prior

= Dirichlet prior is a conjugate family for the multinomial likelihood

= Conjugate families are useful since:
= Many distributions can be represented with hyperparameters
= They allow for sequential update within the same representation
= In many cases we have closed-form solutions for prediction

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian

@ network
D D GamD
XD, QD

Con)

= Instances are independent given the parameters
« (X[m'],y[m’]) are d-separated from (x[m],y[m]) given 6
= Priors for individual variables are a priori independent

= Global independence of parameters P(6)=] [P(6 pxx,)
i 26




Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian

@ network
CENXCED, GamD
XD, QD

Con)

= Posteriors of 0 are independent given complete data
=« Complete data d-separates parameters for different CPDs
= P(6,, 6, | D)=P(6 | D)P(& | D)
= As in MLE, we can solve each estimation problem separately
27

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian
network

= Posteriors of 0 are independent given complete data
= Also holds for parameters within families

= Note context specific independence between 6y, and
Oy;x=1 When given both X and Y

28




Bayesian Estimation in BayesNets

Bayesian network for parameter estimation Bayesian
network

= Posteriors of 6 can be computed independently
= For multinomial 6y,,, posterior is Dirichlet with parameters
(Oty=1jpa FMIX= 1[pa),- .+ (0t —ypa *MIXi=K(pay])
mpﬁl\/l[x Pa]

. P(Xi[M+1]=Xi|PQ[M+1]=pq’D)=Za +M[x, pa]
i Yxilpa i 2

Assessing Priors for BayesNets

= We need the a(x;,pa,) for each node x;

= We can use initial parameters ®, as prior
information
= Need also an equivalent sample size parameter M’
=« Then, we let a(x;pa;) = M’ - P(x;,pa;|©,)

= This allows to update a network using new data

= Example network for priors @
=« P(X=0)=P(X=1)=0.5
=« P(Y=0)=P(Y=1)=0.5
. M=1 @
= Note: a(Xy)=0.5 a(Xq,Y,)=0.25

30




Case Study: ICU Alarm Network

= The “Alarm” network
= 37 variables

= Experiment
= Sample instances

= Learn parameters
= MLE
= Bayesian

Case Study: ICU Alarm Network

The distance between
the original CPDs and S —
the learned ones - ior, s

: Bayes w/ Uniform Prior, M'=5
Bayes w/ Uniform Prior, M'=10 ——
Bayes w/ Uniform Prior, M'=20 ——
Bayes w/ Uniform Prior, M'=50 ——

N

[y

o
o

KL Divergence
o
o

e
»

e
N

0 L J
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
M

= MLE performs worst
= Prior M’=5 provides best smoothing
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Parameter Estimation Summary

Estimation relies on sufficient statistics
= For multinomials these are of the form M[x;,pa;]
= Parameter estimation

~ _ M[Xi,pai] P(Xil pai,D):ax,,pal—i_M[xi’pai]

“P T M pay] Oy, +M[pa]
MLE Bayesian (Dirichlet)

Bayesian methods also require choice of priors
MLE and Bayesian are asymptotically equivalent

Both can be implemented in an online manner by
accumulating sufficient statistics

33
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