Readings: K&F 17.1, 17.2, 17.3, 17.4

Lecture 9 – Apr 25, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Parameter estimation

- Maximum likelihood estimation (MLE)
 - Parameter estimation based on observations
- Bayesian approach
 - Incorporate our prior knowledge

Maximum Likelihood Estimator

■ The *Coin* example – general case

- X: result of a coin toss (head or tail)
- Training data (instances) D=<x[1],...x[m]> (M_H heads and M_T tails)
- Parameters: P(X=h)= θ
- Goal: find $\theta \in [0,1]$ that predicts the data well
 - "Predicts the data well" = likelihood of the data given θ $L(\theta:D) = P(D:\theta) = P(x[1],...,x[m]:\theta)$
 - MLE: Find θ maximizing likelihood $L(\theta:D) = \prod_{i=1}^m P(x[i] \mid x[1],...,x[i-1],\theta) = \prod_{i=1}^m P(x[i] \mid \theta) = \theta^{M_H} (1-\theta)^{M_T}$
 - Equivalent to maximizing log-likelihood $l(\theta:D) = \log P(D:\theta) = M_H \log \theta + M_T \log (1-\theta)$
 - Differentiating the log-likelihood and solving for θ , we get that the maximum likelihood parameter: $\theta_{\it mle} = \arg\max l(\theta : D) = \frac{M_{\it H}}{M_{\it H} + M_{\it T}}$

2

Sufficient Statistics

• For computing the parameter θ of the coin toss example, we only needed M_H and M_T since

$$L(\theta:D) = P(D:\theta) = \theta^{M_H} (1-\theta)^{M_T}$$

 \rightarrow M_H and M_T are sufficient statistics

Sufficient Statistics

• A function s(D) is a sufficient statistic from instances to a vector in \Re^k if, for any two datasets D and D' and any $\theta \in \Theta$, we have

$$\sum_{x[i] \in D} s(x[i]) = \sum_{x[i] \in D'} s(x[i]) \quad \Rightarrow \quad L(D:\theta) = L(D':\theta)$$

- We often refer to the tuple $\sum_{x[i] \in D} s(x[i])$ as the sufficient statistics of the data set D.
 - In coin toss experiment, M_H and M_T are sufficient statistics

5

Sufficient Statistics for Multinomial

- Y: multinomial, k values (e.g. result of a dice throw)
- A sufficient statistics for a dataset D over Y is the tuple of counts <M₁,...M_k> such that M_i is the number of times that the Y=yⁱ in D
- Likelihood function: $L(D:\theta) = \prod_{i=1}^k \theta_i^{M_i}$ where $\theta_i = P(Y = y^i)$
- Multinomial MLE: $\theta^i = \frac{M_i}{\sum_{i=1}^m M_i}$

Sufficient Statistic for Gaussian

- Gaussian distribution: $X \sim N(\mu, \sigma^2)$ ■ Probability density function (pdf): $p(X) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
- Rewrite as $p(X) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-x^2 \frac{1}{2\sigma^2} + x \frac{\mu}{\sigma^2} \frac{\mu^2}{\sigma^2}\right)$
 - \rightarrow sufficient statistics for Gaussian: $\langle M, \Sigma_m x[m], \Sigma_m x[m]^2 \rangle$
- Multinomial MLE: $\mu = \frac{1}{M} \sum_{m} x[m]$

$$\sigma = \sqrt{\frac{1}{M} \sum_{m} (x[m] - \mu)^2}$$

7

MLE for Bayesian Networks

- Parameters
 - θ_{x0} , θ_{x1}
 - $\bullet \ \theta_{\mathsf{y}^0|_{\mathsf{X}^0}}, \ \theta_{\mathsf{y}^1|_{\mathsf{X}^0}}, \ \theta_{\mathsf{y}^0|_{\mathsf{X}^1}}, \ \theta_{\mathsf{y}^1|_{\mathsf{X}^1}}$
- Training data:
 - tuples <x[m],y[m]> m=1,...,M
- Likelihood function:

$$L(D:\theta) = \prod_{m=1}^{M} P(x[m], y[m]:\theta)$$

$$= \prod_{m=1}^{M} P(x[m]:\theta_{X}) P(y[m] | x[m]:\theta_{Y|X})$$

$$= \left(\prod_{m=1}^{M} P(x[m]:\theta_{X}) \right) \left(\prod_{m=1}^{M} P(y[m] | x[m]:\theta_{Y|X})\right)$$

	Υ	
X	y ⁰	y^1
\mathbf{x}^0	0.95	0.05
X^1	0.2	0.8

→ Likelihood decomposes into two separate terms, one for each variable ("decomposability of the likelihood function")

MLE for Bayesian Networks

Terms further decompose by CPDs:

$$\prod_{m=1}^{M} P(y[m] | x[m] : \theta) = \prod_{m:x[m]=x^{0}} P(y[m] | x[m] : \theta_{Y|X}) \prod_{m:x[m]=x^{1}} P(y[m] | x[m] : \theta_{Y|X})
= \prod_{m:x[m]=x^{0}} P(y[m] | x[m] : \theta_{Y|x^{0}}) \prod_{m:x[m]=x^{1}} P(y[m] | x[m] : \theta_{Y|x^{1}})$$

By sufficient statistics

$$\prod_{m:x[m]=x^{1}} P(y[m]|x[m]:\theta_{Y|x^{1}}) = \theta_{y^{0}|x^{1}}^{M[x^{1},y^{0}]} \cdot \theta_{y^{1}|x^{1}}^{M[x^{1},y^{1}]}$$

where $M[x^1,y^1]$ is the number of data instances in which X takes the value x^1 and Y takes the value y^1

MLE

$$\theta_{y^0|x^1} = \frac{M[x^1, y^0]}{M[x^1, y^0] + M[x^1, y^1]} = \frac{M[x^1, y^0]}{M[x^1]}$$

9

MLE for Bayesian Networks

Likelihood for Bayesian network

$$L(\Theta:D) = \prod_{m} P(x[m]:\Theta)$$

$$= \prod_{m} \prod_{i} P(x_{i}[m] | Pa_{i}[m]:\Theta_{i})$$

$$= \prod_{i} \left[\prod_{m} P(x_{i}[m] | Pa_{i}[m]:\Theta_{i}) \right]$$

$$= \prod_{i} L_{i}(\boldsymbol{\theta}_{x_{i}|Px_{i}}: X_{i}, Pa_{i})$$
Conditional likelihood or "Local likelihood"

ightarrow if $\theta_{X_j|Pa(X_j)}$ are disjoint then MLE can be computed by maximizing each local likelihood separately

MLE for Table CPD BayesNets

Multinomial CPD

$$\begin{split} L_{Y}(D:\theta_{Y|\mathbf{X}}) &= \prod_{m} \theta_{y[m]|\mathbf{X}[m]} \\ &= \prod_{\mathbf{x} \in Val(\mathbf{X})} \left[\prod_{y \in Val(Y)} \theta_{y|\mathbf{x}}^{M[\mathbf{x},y]} \right] \end{split}$$

■ For each value **x**∈**X** we get an independent multinomial problem where the MLE is

$$\theta_{y^i|x} = \frac{M[x, y^i]}{M[x]}$$

11

MLE for Tree CPDs

Assume tree CPD with known tree structure

MLE for Tree CPD BayesNets

Tree CPD T, leaves I

$$\begin{split} L_{Y}(D:\theta_{Y|\mathbf{X}}) &= \prod_{m} P(y[m] \mid \mathbf{x}[m] : \theta_{Y|\mathbf{X}}) \\ &= \prod_{m} \theta_{y[m] \mid l(\mathbf{x}[m])} \\ &= \prod_{l \in Leaves(T)} \left[\prod_{y \in Val(Y)} \theta_{y|l}^{M[c_{l}, y]} \right] \end{split}$$

 For each value I∈Leaves(T) we get an independent multinomial problem where the MLE is

$$\theta_{y^{i}|l} = \frac{M[c_{l}, y^{i}]}{M[c_{l}]}$$
 $M[c_{l}] = \sum_{x:l(x)=l} M[x, y^{i}]$

13

Limitations of MLE

- A thumbtack is tossed 10 times, and comes out 'head' 3 of the 10 tosses → Probability of head = 0.3
- A coin is tossed 10 times, and comes out 'head' 3 of the 10 tosses → Probability of head = 0.3
- A coin is tossed 1,000,000 times, and comes out 'head' 300,000 of the 1,000,000 tosses → Probability of head = 0.3
- Would you place the same bet on the next thumbtack toss as you would on the next coin toss?
- We need to incorporate prior knowledge
 - Prior knowledge should only be used as a guide

Bayesian Inference

- Assumptions
 - lacktriangle Given a fixed θ tosses are independent
 - If θ is unknown tosses are not marginally independent
 each toss tells us something about θ
- The following network captures our assumptions

15

Bayesian Inference

Joint probabilistic model

$$P(x[1],...,x[M],\theta) = P(x[1],...,x[M]|\theta)P(\theta)$$

$$= P(\theta) \prod_{i=1}^{M} P(x[i]|\theta)$$

$$= P(\theta)\theta^{M_H} (1-\theta)^{M_T}$$

Posterior probability over θ

$$P(\theta \mid x[1],...,x[M]) = \underbrace{\frac{P(x[1],...,x[M] \mid \theta)P(\theta)}{P(x[1],...,x[M])}}_{\text{Normalizing factor}}$$

For a uniform prior, posterior is the normalized likelihood

Bayesian Prediction

Predict the data instance from the previous ones

$$P(x[M+1] | x[1],...,x[M])$$

$$= \int_{\theta} P(x[M+1], \theta | x[1],...,x[M]) d\theta$$

$$= \int_{\theta} P(x[M+1] | x[1],...,x[M], \theta) P(\theta | x[1],...,x[M]) d\theta$$

$$= \int_{\theta} P(x[M+1] | \theta) P(\theta | x[1],...,x[M]) d\theta$$

■ Solve for uniform prior $P(\theta)=1$ (for $0 \le \theta \le 1$) and binomial variable

$$P(x[M+1] = x^{1} \mid x[1],...,x[M]) = \frac{1}{P(x[1],...,x[M])} \int_{\theta} \theta \cdot \theta^{M_{H}} \cdot (1-\theta)^{M_{T}}$$
"Bayesian estimate"
$$= \frac{M_{H} + 1}{M_{H} + M_{T} + 2}$$
"Imaginary counts" 17

Example: Binomial Data

- Prior: uniform for θ in [0,1]
 - $P(\theta) = 1$

 \rightarrow P(θ |D) is proportional to the likelihood L(D: θ)

$$P(\theta \mid x[1], ...x[M]) \propto P(x[1], ...x[M] \mid \theta)$$

$$(M_{H}, M_{T}) = (4,1)$$

- MLE for P(X=H) is 4/5 = 0.8
- Bayesian prediction is 5/7 = 0.71

$$P(x[M + 1] = H \mid D) = \int \theta \cdot P(\theta \mid D) d\theta = \frac{5}{7} = 0.7142 \dots$$

Dirichlet Priors

- A Dirichlet prior is specified by a set of (non-negative) hyper-parameters α₁,...α_k so that θ=[θ₁,...,θ_k] ~ Dirichlet(α₁,...α_k) if
 - $p(\theta) = \frac{1}{Z} \prod_{k} \theta_{k}^{\alpha_{k}-1} \quad \text{where} \quad \sum_{k} \theta_{k} = 1 , \quad \Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$ and $Z = \frac{\prod_{i=1}^{k} \Gamma(\alpha_{i})}{\Gamma(\sum_{i=1}^{k} \alpha_{i})} .$
 - Intuitively, hyper-parameters correspond to the number of imaginary counts before starting the coin toss experiment

Dirichlet Priors

- Dirichlet priors have the property that the posterior is also Dirichlet
 - Prior is Dir($\alpha_1,...\alpha_k$) $p(\theta) = \frac{1}{Z} \prod_{k} \theta_k^{\alpha_k 1}$
 - Data counts are M₁,...,M_k
 - Posterior is Dir($\alpha_1 + M_1, ..., \alpha_k + M_k$) $p(\theta \mid D) = \frac{1}{Z'} \prod_k \theta_k^{\alpha_k + M_k 1}$
- The hyperparameters $\alpha_1,...,\alpha_K$ can be thought of as "imaginary" counts from our prior experience
- Equivalent sample size = $\alpha_1 + ... + \alpha_K$
 - The larger the equivalent sample size the more confident we are in our prior

2

Effect of Priors

 Prediction of P(X=H) after seeing data with M_H=0.2M, M_T=0.8M as a function of the sample size

Effect of Priors (cont.)

 In real data, Bayesian estimates are less sensitive to noise in the data

General Formulation

- Joint distribution over D, θ $P(D,\theta) = P(D|\theta)P(\theta)$
- Posterior distribution over parameters

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

• P(D) is the marginal likelihood of the data

$$P(D) = \int_{\theta} P(D|\theta)P(\theta)d\theta$$

- As we saw, likelihood can be described compactly using sufficient statistics
- We want conditions in which posterior is also compact
 - E.g. Dirichlet priors

Conjugate Families

• A family of priors $P(\theta : \alpha)$ is conjugate to a model $P(\xi | \theta)$ if for any possible dataset D of i.i.d samples from $P(\xi | \theta)$ and choice of hyperparameters α for the prior over θ , there are hyperparameters α' that describe the posterior, i.e.,

 $P(\theta;\alpha') \propto P(D|\theta)P(\theta;\alpha)$

- Posterior has the same parametric form as the prior
- Dirichlet prior is a conjugate family for the multinomial likelihood
- Conjugate families are useful since:
 - Many distributions can be represented with hyperparameters
 - They allow for sequential update within the same representation
 - In many cases we have closed-form solutions for prediction

25

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- Instances are independent given the parameters
 - (x[m'],y[m']) are d-separated from (x[m],y[m]) given θ
- Priors for individual variables are a priori independent
 - Global independence of parameters $P(\theta) = \prod_{i} P(\theta_{X_i|P_d(X_i)})$

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- Posteriors of θ are independent given complete data
 - Complete data d-separates parameters for different CPDs
 - $P(\theta_X, \theta_{Y|X} \mid D) = P(\theta_X \mid D) P(\theta_{Y|X} \mid D)$
 - As in MLE, we can solve each estimation problem separately

2

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- \blacksquare Posteriors of θ are independent given complete data
 - Also holds for parameters within families
 - Note context specific independence between $\theta_{Y|X=0}$ and $\theta_{Y|X=1}$ when given both X and Y

Bayesian Estimation in BayesNets

Bayesian network for parameter estimation

Bayesian network

- Posteriors of θ can be computed independently
 - For multinomial $\theta_{X_i|pa_i}$ posterior is Dirichlet with parameters $(\alpha_{X_i=1|pa_i}+M[X_i=1|pa_i]),...,(\alpha_{X_i=k|pa_i}+M[X_i=k|pa_i])$
 - $P(X_{i}[M+1] = x_{i} | Pa_{i}[M+1] = pa_{i}, D) = \frac{\alpha_{x_{i}|pa_{i}} + M[x_{i}, pa_{i}]}{\sum_{x_{i}|pa_{i}} + M[x_{i}, pa_{i}]}$

20

Assessing Priors for BayesNets

- We need the $\alpha(x_i,pa_i)$ for each node x_i
- We can use initial parameters ⊕₀ as prior information
 - Need also an equivalent sample size parameter M'
 - Then, we let $\alpha(x_i,pa_i) = M' \cdot P(x_i,pa_i|\Theta_0)$
- This allows to update a network using new data
 - Example network for priors

- P(X=0)=P(X=1)=0.5
- P(Y=0)=P(Y=1)=0.5
- M'=1
- Note: $\alpha(x_0)=0.5 \ \alpha(x_0,y_0)=0.25$

Parameter Estimation Summary

- Estimation relies on sufficient statistics
 - For multinomials these are of the form M[x_i,pa_i]
 - Parameter estimation

$$\hat{\theta}_{x_i|pa_i} = \frac{M[x_i, pa_i]}{M[pa_i]} \qquad P(x_i \mid pa_i, D) = \frac{\alpha_{x_i, pa_i} + M[x_i, pa_i]}{\alpha_{pa_i} + M[pa_i]}$$
MLE
Bayesian (Dirichlet)

- Bayesian methods also require choice of priors
- MLE and Bayesian are asymptotically equivalent
- Both can be implemented in an online manner by accumulating sufficient statistics

33

Acknowledgement

 These lecture notes were generated based on the slides from Prof Eran Segal.

 ${\sf CSE~515-Statistical~Methods-Spring~2011}$