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Directed Graphical Models: Bayes Nets

Probabilistic graphical models represent a joint distribution over a set of variables.

P(X1,....Xm)

Given a joint distribution, we can reason about unobserved variables given
observations (evidence). Here’s an applet (model file:
http://www.cs.cmu.edu/~javabayes/ Examples/CarStarts/car-starts.bif)
that illustrates reasoning with a Bayes Net. Here’s an example from my own work (with
Ben Sapp) of using graphical models for detection and parsing of human figures:
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Pictorial Structure model (Bayes net)

Posterior distribution over head/torso/limbs locations
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The Naive Bayes model is an example of a joint distribution model (where one of the
variables is the class variable ¥"):

P(Y. X1.....Xm) = P(Y) [, P(X;|Y)

We used the Naive Bayes model diagnostically: Given the effects (features)

Xy =ux1...., X = T., we used Bayes rule to compute P(Y |1, .., . ), the
posterior over the cause. In one of the midterm problems, you also saw that we don’t
need to know all the features, but for example can compute P*{Y"|:ry ). In general, the
joint distribution allows us to compute the posterior distribution over any set of
variables given another set of variables.

Representing the Joint

The joint distribution of a set of variables is an exponentially-sized object. If all the
variables are binary, the joint over ;;; variables has 21 —1 parameters. The Naive Bayes
model is much more concise: it uses conditional independence assumptions to restrict
the types of distributions it can represent and uses (712 ) parameters. The key to
concise representation is factoring: representing the whole with a product of
interrelated parts. The key ingredients in this representation are the chain rule, Bayes
Rule and conditional independence.

Chain Rule : P(X1...., X,) = P(X,)P(X2|X1)P(X3|X2. X1) ... P(Xm| X

The chain rule by itself does not lead to concise representation: we need to assume
conditional independencies to reduce the size of the representation. Let’s consider
some very simple examples. We want to reason about three variables: Traffic (whether
there will be traffic on the roads tomorrow), Rain (whether it will rain tomorrow),
Umbrella (whether I'll bring my umbrella with me tomorrow). These random variables
are clearly correlated. Using the chain rule, we have:

P(R.T,U) = P(R)P(T|R)P(U|1. R)

Now if we assume that my decision about the umbrella does not depend on traffic once I
know if it’s raining, i.e. P(U|1", B) = P(U/|R), then we have

P(R.T,U) = P(R)P(T|R)P(U|R)

Conditional Independence:
X, is conditionally independent of X; given X}, denoted as

XL X | X5
if
PXi=xi | Xp=ap. Xj=1;) = P(X; =a; | X = x1), Vo, 1, 13
or equivalently:

P(;Yh;:»!';.:{j:»!'j J'fk=.'f';l.]|=
P(Xi=ux | X = ap )P(Xj =2 | Xy = axp). Voo o). xp
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Graphical models use conditional independence assumptions for efficient
representation, inference and learning of joint distributions. The above model for
R,T,U can be represented as a directed graph, {7 «— [ — ‘[', where nodes correspond
to variables and edges correspond to direct correlations, which we will define precisely
below.

Here’s a toy graphical model for a car operation.

GasinTank

SparkPlugs

Graphical models are simplified descriptions of how some portion of the world works.
They will usually not include every possible variable or all interactions between
variables, but focus on the most relevant variables and strongest interactions. Their
probabilistic nature allows reasoning about unknown variables given partial evidence
about the world. Directed graphical models, know as Bayesian Networks, Bayes Nets,
Belief Nets, etc, can be thought of as causal models (with some important caveats).
Typically, causal models (if they exist) are the most concise representation of the
underlying distribution. There are several types of reasoning we can do with such
models:

e diagnostic reasoning: from effects to causes

¢ causal reasoning: from causes to effects

e mixtures of the two

Graphical Models represent joint distributions using simple, local interactions models
which describe how variables depend on each other. Local interactions are then chained
together to give global, indirect interactions. In case of directed graphical models
(Bayes nets), local interactions are conditional distributions. The graphical
representation encodes conditional independence assumptions.
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Graphs and Conditional Independence
Assumptions

Let’s consider a graphical model for a slightly more complex example:
¢ The flu causes sinus inflammation
o Allergies cause sinus inflammation
¢ Sinus inflammation causes a runny nose
¢ Sinus inflammation causes headaches

A Bayes net which encodes the assumptions for this example is shown below. Nodes
represent variables

Sinus)

P(F.A.5, H N) = P(F)P(A)P(S|F, A)P(H|S)P(N

G

S)

We have 5 variables, so there are 25 _ | entries in the joint. How many parameters do
we need for all the conditional distributions above?

The graph encodes the following conditional independence assumptions (and more).
e F1A
o T(FLN)
o FINIS
e 7(HLIN)
e« HINI|S

Here’s another classic example, due to Judea Pearl, who was instrumental to
popularizing Bayes nets and probabilistic reasoning in Al It helps to know that he lives
in LA.

John calls to say my house alarm is ringing, but neighbor Mary doesn’t call. Sometimes
it’s set off by minor earthquakes. Is there a burglar? The variables are: Burglary,
Earthquake, Alarm, JohnCalls, MaryCalls. Our model will reflect the following
assumptions:

e Aburglar can set the alarm off

e An earthquake can set the alarm off

e The alarm can cause Mary to call

e The alarm can cause John to call
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P(E.B.A,J. M) = P(EYP(B)P(A|B. EYP(J|A)P(M]|A)

In general, the graph encodes the following basic assumption, from which many others
can be derived:

Local Markov Assumption (LMA): A variable X is independent of its
nondescendants given its parents (and only its parents) :

X1 NonDescendants x| Pax

For our purposes here, a node X’ is a non-descendant of X if X’ is not X and not a parent
of X and there is no directed path from X to X'.

Parameters: Conditional Distributions

The directed graph encodes independencies. The numerical value of the joint
distribution is encoded in local conditional distributions. In case of discrete variables,
these are called CPTs (conditional probability tables).

00z

P(E.B.A,J M) = P(EYP(B)P(A|B. E)P(J|A)P(M|A)

The Local Markov Assumption allows us to decompose the joint in terms of the CPTs:

P(E,B.A.J,M)= P(E)P(B|E)P(A|B. EYP(J|A. B. EYP(M|J.A. B, E) =
P(E)P(B)P(A|B. E)P(J|A)P(M|A)

Why? Let’s look at the general case.
General Bayes Net Definition

e Set of random variables: {Xl-_ con X }
¢ Directed acyclic graph (DAG): nodes = variables
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e Conditional Distributions: CPTs F(X[Pax; )
e Local Markov Assumption: A variable X is independent of its non-descendants
given it parents: (X L Non Descendants x |Pax )

e Joint distribution is given by: P(Xy,.... Xom) = H_; P(Xj|Pax;)

The last statement about the joint distribution is due to the following construction.
Take a topological sort [1] of the DAG and renumber the variables such that all the
children of a node appear after it in the ordering. Then

P(X1,.... X)) :H_j P(X;|Xj1...., X)) = l_[j F(.‘fleﬂ};_j:]

by LMA: since none of j’s children appear before j in the ordering, X;_1.. ... X1 only
contains its parents and non-descendants.

Properties of Conditional Independence

The Local Markov Assumption specifies the set of basic independencies in a Bayes net.
We can use properties of conditional independence to infer many others.

e Symmetry:
(X1Y|Z) = (Y LX|Z)
e Decomposition:
(XLY. W|Z) = (X LY|Z)
e Weak union:
(XLY. W|Z) = (XLY|Z, W)
e Contraction:

(XLW|Y,Z). (X LY|Z) = (X LY, W|Z)

Intersection (only for positive distributions P()>0)

(X LYW, Z), (X LWV, Z) = (X LY. W|Z)

Conditional Independence In Bayes Nets

For the Flu-Sinus network, the LMA (plus symmetry and decomposition) gives the
following indepedencies:

* F1A

o FIN|S

e HIN|S

Explaining Away

Using the Flu-Sinus network, a reasonable setting of parameters could give:
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P(F =1t) =01 P =t
(S =t A=1t)=05

thatis(f'LA). —(F'LA| S) This property of distributions, called explaining away,
can be encoded in the V-structures of a Bayes net. The CPTs shown for the Burglar-
alarm network above exhibit exactly this explaining away property.

3-Node BNs

For 3 node BN, there are several possible DAG structures: fully disconnected (1), fully
connected (6), partially disconnected (6) and the following 4 cases:

1. Xhasindirect causal effectonZ: ¥ — ¥V — 7

2. Xhasindirect evidential effectonZ: X — ¥V — 7

3. Xhascommon cause withZ: X «— ¥V — 7

4. Xhas common effectwithZ: ¥ — V" «— 7
In the first 3 cases, we have — ¥ | 7 but X LZ | ¥, and in the fourth, the V-structure,
wehave ¥ | zbut—(X L1Z | Y)

In the first three cases, X influences Z (without observations) but the influence is
stopped by observing Y, while in cases like 4, X does not influence Z (without
observations) but the influence is enabled by observing Y. In the Flu-Sinus network,
observing S correlates F and A because of possible explaining away. More generally,
observing any descendant of S correlates F and A since we have evidence about S which
could be explained away by one of the causes of S.

Active Trails

Definition: A simple trail { X1, Xo.--+ . Xi}inthe graph (no cycles) is an active trail
when variables O C { X1, - . X, | are observed if for each consecutive triplet in the
trail:

e X, | — X; — X, and X, isnot observed (:X; & ()

X; 1 + X; + Xi,1,and X;is not observed (X; & O)

X;_ 1 + X; — Xi,1,and X;is not observed (X; & O)

Xi_1 — X; + X1, and X;isobserved (X; £ (), or one of its descendants
is observed

Directed Separation (d-sep) Theorem: Variables X; and -X ; are independent
givenQ C {X{,-- . X, }ifthereis no active trail between X; and -X j when

variables ¢ are observed.

The same theorem applies for sets of variables A,B: if there are no active trails between
any pairs of variables (Xi € A, X; € IB)when () are observed, then (A L 3|0),

Here are some examples:

A=t)=01, PF=tS5=1t =08 PF



(ALG). (ALC|B). (ALC|B. D). =(ALC | B, D.I)

Representation Theorem

Definition: I (G )is the set of all independencies implied by directed separation on
graph G.

Definition: I ( P )is the set of all independencies in distribution P.

BN Representation Theorem
IG)CI(P) & P(X. ..., X)) =[], P(Xi|Pax;,)

This theorem is important because it tells us that every P has at least one BN structure

G that represents it and conversely if P factors over G, then we can read (a subset of)
I(P) from G.
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Links

1. en.wikipedia.org/wiki/Topological_sorting
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