Lectures: Naive Bayes

On this page... (hide)

- Naive Bayes Model
 - Estimating P(y)
 - Estimating $P(\mathbf{x} \mid y)$
 - MLE vs. MAP
 - Examples

Naive Bayes Model

The Naive Bayes classifier is an example of the generative approach: we will model $P(\mathbf{x}, y)$. Consider the toy transportation data below:

x: Inputs/Feat	y: Class		
Distance(miles)	Raining	Flat Tire	Mode
1 mile	no	no	bike
2 miles	yes	no	walk
1 mile	no	yes	bus
1 mile	yes	no	walk
2 miles	yes	no	bus
1 mile	no	no	car
1 mile	yes	yes	bike
10 miles	yes	no	bike
10 miles	no	no	car
4 miles	no	no	bike

We will decompose $P(\mathbf{x}, y)$ into class prior and class model:

$$P(\mathbf{x}, y) = \underbrace{P(y)}_{\text{classprior classmodel}} \underbrace{P(\mathbf{x} \mid y)}_{\text{classprior class}}$$

and estimate them separately as $\hat{P}(y)$ and $\hat{P}(\mathbf{x} \mid y)$. (Class prior should not be confused with parameter prior. They are very similar concepts, but not the same things.)

We will then use our estimates to output a classifier using Bayes rule:

$$\begin{split} h(\mathbf{x}) &= \arg\max_{y} & \hat{P}(y \mid \mathbf{x}) \\ &= \arg\max_{y} & \frac{\hat{P}(y)\hat{P}(\mathbf{x} \mid y)}{\sum_{y'}\hat{P}(y')\hat{P}(\mathbf{x} \mid y')} \\ &= \arg\max_{y} & \hat{P}(y)\hat{P}(\mathbf{x} \mid y) \end{split}$$

To estimate our model using MLE, we can separately estimate the two parts of the model:

$$\log P(D) = \sum_{i} \log P(\mathbf{x}_{i}, y_{i})$$

$$= \sum_{i} \log P(y_{i}) + \log P(\mathbf{x}_{i} \mid y_{i})$$

$$= \log P(D_{Y}) + \log P(D_{X} \mid D_{Y})$$

Estimating P(y)

How do we estimate P(y)? This is very much like the biased coin, except instead of two outcomes, we have 4 (walk, bike, bus, car). We need 4 parameters to represent this multinomial distribution (3 really, since they must sum to 1): $(\theta_{\text{walk}}, \theta_{\text{bike}}, \theta_{\text{bus}}, \theta_{\text{car}})$. The MLE estimate (deriving it is a good exercise) is $\hat{\theta}_y = \frac{1}{n} \sum_i \mathbf{1}(y = y_i)$.

y	parameter θ_y	MLE $\hat{ heta}_y$
walk	$\theta_{ m walk}$	0.2
bike	$ heta_{ m bike}$	0.4
bus	$ heta_{ m bus}$	0.2
car	$ heta_{ m car}$	0.2

Estimating $P(\mathbf{x} \mid y)$

Estimating class models is much more difficult, since the joint distribution of m dimensions of \mathbf{x} can be very complex. Suppose that all the features are binary, like Raining or Flat Tire above. If we have m features, there are $K*2^m$ possible values of (\mathbf{x},y) and we cannot store or estimate such a distribution explicitly, like we did for P(y). The key (naive) assumption of the model is conditional independence of the features given the class. Recall that X_k is conditionally independent of X_j given Y if:

$$P(X_j = x_j \mid X_k = x_k, Y = y) = P(X_j = x_j \mid Y = y), \ \forall x_j, x_k, y$$

or equivalently,

$$P(X_j = x_j, X_k = x_k \mid Y = y) =$$

 $P(X_j = x_j \mid Y = y)P(X_k = x_k \mid Y = y), \forall x_j, x_k, y$

More generally, the Naive Bayes assumption is that:

$$\hat{P}(\mathbf{X} \mid Y) = \prod_{j} \hat{P}(X_j \mid Y)$$

Hence the Naive Bayes classifier is simply:

$$\arg\max_{y} \hat{P}(Y = y \mid \mathbf{X}) = \arg\max_{y} \hat{P}(Y = y) \prod_{j} \hat{P}(X_j \mid Y = y)$$

If the feature X_j is discrete like Raining, then we need to estimate K distributions for it, one for each class, $P(X_j|Y=k)$. We have 4 parameters, ($\theta_{\mathrm{R|walk}}, \theta_{\mathrm{R|bike}}, \theta_{\mathrm{R|bus}}, \theta_{\mathrm{R|car}}$), denoting probability of Raining=yes given transportation taken. The MLE estimate (deriving it is also a good exercise) is $\hat{\theta}_{\mathrm{R|y}} = \frac{\sum_i \mathbf{1}(R=yes,y=y_i)}{\sum_i \mathbf{1}(y=y_i)}$. For example, $P(\mathrm{R}\mid Y)$ is

y	parameter $ heta_{ ext{R} y}$	MLE $\hat{\theta}_{R y}$
walk	$\theta_{ m R walk}$	1
bike	$ heta_{ m R bike}$	0.5
bus	$ heta_{ m R bus}$	0.5
car	$ heta_{ m R car}$	0

For a continuous variable like Distance, there are many possible choices of models, with Gaussian being the simplest. We need to estimate K distributions for each feature, one for each class, $P(X_j|Y=k)$. For example, $P(D\mid Y)$ is

y	parameters $\mu_{\mathrm{D} y}$ and $\sigma_{\mathrm{D} y}$		$\hat{\sigma}_{\mathrm{D} y}$
walk	$ ho_{ m D walk}, \ \sigma_{ m D walk}$	1.5	0.5
bike	$\mu_{ m D bike}$, $\sigma_{ m D bike}$	4	3.7
bus	$\mu_{\mathrm{D} \mathrm{bus}}, \sigma_{\mathrm{D} \mathrm{bus}}$	1.5	0.5
car	$\mu_{\mathrm{D car}}, \sigma_{\mathrm{D car}}$	5.5	4.5

MLE vs. MAP

Note the danger of using MLE estimates. For example, consider the estimate of conditional distribution of Raining=yes: $\hat{P}(\text{Raining} = \text{yes} \mid y = \text{car}) = 0$. So if we know it's raining, no matter the distance, the probability of taking the car is 0, which is not a good estimate. This is a general problem due to scarcity of data: we never saw an example with car and raining. Using **MAP estimation with Beta priors** (with $\alpha, \beta > 1$), estimates will never be zero, since additional "counts" are added.

Examples

2-dimensional, 2-class example

Suppose our data is from two classes (plus and circle) in two dimensions (x_1 and x_2) and looks like this:

The Naive Bayes classifier will estimate a Gaussian for each class and each dimension. We can visualize the estimated distribution by drawing a contour of the density. The decision boundary, where the probability of each class given the input is equal, is shown in red.

Text classification: bag-of-words representation

In classifying text documents, like news articles or emails or web pages, the input is a very complex, structured object. Fortunately, for simple tasks like deciding about spam vs. not spam, politics vs sports, etc., a very simple representation of the input suffices. The standard way to represent a document is to completely disregard the order of the

words in it and just consider their counts. So the email below might be represented as:

The Naive Bayes classifier then learns $\hat{P}(spam)$, and $\hat{P}(word \mid spam)$ and $\hat{P}(word \mid ham)$ for each word in our dictionary by using MLE/MAP as above. It then predicts prediction 'spam' if:

$$\hat{P}(spam) \textstyle\prod_{\text{word} \in \text{email}} \hat{P}(word \mid spam) > \hat{P}(ham) \textstyle\prod_{\text{word} \in \text{email}} \hat{P}(word \mid ham)$$

Copyright © 2005–2013 the Main wiki and its authors