Kalman Filters

Kalman filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying- $\mathbf{X}_{t}=X, Y, Z, X, Y, \dot{Z}$.

Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions

Prediction step: if $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$ is Gaussian, then prediction

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)=\int_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) d \mathbf{x}_{t}
$$

is Gaussian. If $\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)$ is Gaussian, then the updated distribution

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
$$

is Gaussian
Hence $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$ is multivariate Gaussian $N\left(\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right)$ for all t
General (nonlinear, non-Gaussian) process: description of posterior grows unboundedly as $t \rightarrow \infty$

Simple 1-D example

Gaussian random walk on X-axis, s.d. σ_{x}, sensor s.d. σ_{z}

$$
\mu_{t+1}=\frac{\left(\sigma_{t}^{2}+\sigma_{x}^{2}\right) z_{t+1}+\sigma_{z}^{2} \mu_{t}}{\sigma_{t}^{2}+\sigma_{x}^{2}+\sigma_{z}^{2}} \quad \sigma_{t+1}^{2}=\frac{\left(\sigma_{t}^{2}+\sigma_{x}^{2}\right) \sigma_{z}^{2}}{\sigma_{t}^{2}+\sigma_{x}^{2}+\sigma_{z}^{2}}
$$

General Kalman update

Transition and sensor models:

$$
\begin{aligned}
P\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}\right) & =N\left(\mathbf{F}_{t}, \boldsymbol{\Sigma}_{x}\right)\left(\mathbf{x}_{t+1}\right) \\
P\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right) & =N\left(\mathbf{H x}_{t}, \boldsymbol{\Sigma}_{z}\right)\left(\mathbf{z}_{t}\right)
\end{aligned}
$$

F is the matrix for the transition; Σ_{x} the transition noise covariance
H is the matrix for the sensors; Σ_{z} the sensor noise covariance
Filter computes the following update:

$$
\begin{aligned}
& \boldsymbol{\mu}_{t+1}=\mathbf{F} \boldsymbol{\mu}_{t}+\mathbf{K}_{t+1}\left(\mathbf{z}_{t+1}-\mathbf{H F} \boldsymbol{\mu}_{t}\right) \\
& \boldsymbol{\Sigma}_{t+1}=\left(\mathbf{I}-\mathbf{K}_{t+1}\right)\left(\mathbf{F} \boldsymbol{\Sigma}_{t} \mathbf{F}^{\top}+\boldsymbol{\Sigma}_{x}\right)
\end{aligned}
$$

where $\mathbf{K}_{t+1}=\left(\mathbf{F} \boldsymbol{\Sigma}_{t} \mathbf{F}^{\top}+\boldsymbol{\Sigma}_{x}\right) \mathbf{H}^{\top}\left(\mathbf{H}\left(\mathbf{F} \boldsymbol{\Sigma}_{t} \mathbf{F}^{\top}+\boldsymbol{\Sigma}_{x}\right) \mathbf{H}^{\top}+\boldsymbol{\Sigma}_{z}\right)^{-1}$
is the Kalman gain matrix
Σ_{t} and \mathbb{K}_{t} are independent of observation sequence, so compute offline

2-D tracking example: smoothing

Where it breaks

Cannot be applied if the transition model is nonlinear
Extended Kalman Filter models transition as locally linear around $\mathrm{x}_{t}=\boldsymbol{\mu}_{t}$ Fails if systems is locally unsmooth

