Sampling-Based Inference

Inference by stochastic simulation

Basic idea:

1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}

0.5

3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Sampling from an empty network

function Prior-SAMPLE ($b n$) returns an event sampled from $b n$ inputs: $b n$, a belief network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
$\mathrm{x} \leftarrow$ an event with n elements
for $i=1$ to n do
$x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{parent} s\left(X_{i}\right)\right)$ given the values of $\operatorname{Parents}\left(X_{i}\right)$ in \mathbf{x}
return x
Example

Example

\square Example

\square Example

\square Example

\square Example

\square Example

Sampling from an empty network contd.

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability

$$
\text { E.g., } S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)
$$

Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event x_{1}, \ldots, x_{n}
Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

That is, estimates derived from PriorSample are consistent
Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

Rejection sampling

$\hat{\mathbf{P}}(X \mid e)$ estimated from samples agreeing with e
function Rejection-Sampling $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: \mathbf{N}, a vector of counts over X, initially zero
for $j=1$ to N do
$\mathrm{x} \leftarrow \operatorname{Prior}-\operatorname{Sample}(b n)$
if x is consistent with e then
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x}
return Normalize(N[X])
E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples 27 samples have Sprinkler $=$ true Of these, 8 have Rain=true and 19 have Rain=false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NormaLIZE}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

$$
\begin{array}{ll}
\hat{\mathbf{P}} & (X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e}) \quad \text { (algorithm defn.) } \\
& \left.=\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) \quad \text { (normalized by } N_{P S}(\mathbf{e})\right) \\
& \approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) \quad \text { (property of PRIORSAMPLE) } \\
& =\mathbf{P}(X \mid \mathbf{e}) \quad \text { (defn. of conditional probability) }
\end{array}
$$

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if $P(\mathbf{e})$ is small
$P($ e $)$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function LikELiHood-WEIGHTing \((X, \mathbf{e}, b n, N)\) returns an estimate of \(P(X \mid \mathbf{e})\)
    local variables: \(\mathbf{W}\), a vector of weighted counts over \(X\), initially zero
    for \(j=1\) to \(N\) do
        \(\mathbf{x}, w \leftarrow\) Weighted-Sample \((b n)\)
        \(\mathbf{W}[x] \leftarrow \mathbf{W}[x]+w\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
    return Normalize( \(\mathbf{W}[X]\) )
```

function WEIGHTED-SAMPLE($b n$, e) returns an event and a weight
$\mathbf{x} \leftarrow$ an event with n elements; $w \leftarrow 1$
for $i=1$ to n do
if X_{i} has a value x_{i} in \mathbf{e}
then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
else $x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
return x, w

Likelihood weighting analysis

Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{i} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right)
$$

Note: pays attention to evidence in ancestors only \Rightarrow somewhere "in between" prior and posterior distribution

Weight for a given sample z, e is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{parents}\left(E_{i}\right)\right)
$$

Weighted sampling probability is

$$
\begin{aligned}
& S_{W S}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e}) \\
& \quad=\prod_{i=1}^{l} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right) \\
& \quad=P(\mathbf{z}, \mathbf{e}) \text { (by standard global semantics of network) }
\end{aligned}
$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Approximate inference using MCMC

"State" of network $=$ current assignment to all variables.
Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function GibBS-SAMPLING \((X, \mathbf{e}, b n, N)\) returns an estimate of \(P(X \mid \mathbf{e})\)
    local variables: \(\mathbf{N}[X]\), a vector of counts over \(X\), initially zero
                                    \(\mathbf{Z}\), the nonevidence variables in \(b n\)
                                    \(\mathbf{x}\), the current state of the network, initially copied from \(\mathbf{e}\)
    initialize \(\mathbf{x}\) with random values for the variables in \(\mathbf{Y}\)
    for \(j=1\) to \(N\) do
        for each \(Z_{i}\) in Z do
            sample the value of \(Z_{i}\) in \(\mathbf{x}\) from \(\mathbf{P}\left(Z_{i} \mid m b\left(Z_{i}\right)\right)\)
            given the values of \(M B\left(Z_{i}\right)\) in \(\mathbf{x}\)
        \(\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
    return Normalize( \(\mathrm{N}[X]\) )
```

Can also choose a variable to sample at random each time

The Markov chain

With Sprinkler $=$ true, WetGrass $=$ true, there are four states:

Wander about for a while, average what you see

MCMC example contd.

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain = true, 69 have Rain $=$ false

$$
\begin{gathered}
\hat{\mathbf{P}}(\text { Rain } \mid \text { Sprinkler }=\text { true, WetGrass }=\text { true }) \\
\quad=\operatorname{NormALIZE}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle
\end{gathered}
$$

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass
Probability given the Markov blanket is calculated as follows:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid \operatorname{parents}\left(X_{i}\right)\right) \Pi_{Z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid \text { parents }\left(Z_{j}\right)\right)
$$

Easily implemented in message-passing parallel systems, brains
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
$P\left(X_{i} \mid m b\left(X_{i}\right)\right.$) won't change much (law of large numbers)

MCMC analysis: Outline

Transition probability $q\left(\mathrm{x} \rightarrow \mathrm{x}^{\prime}\right)$
Occupancy probability $\pi_{t}(\mathbf{x})$ at time t
Equilibrium condition on π_{t} defines stationary distribution $\pi(\mathbf{x})$
Note: stationary distribution depends on choice of $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$
Pairwise detailed balance on states guarantees equilibrium
Gibbs sampling transition probability:
sample each variable given current values of all others
\Rightarrow detailed balance with the true posterior
For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

Stationary distribution

$\pi_{t}(\mathbf{x})=$ probability in state \mathbf{x} at time t
$\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=$ probability in state \mathbf{x}^{\prime} at time $t+1$
π_{t+1} in terms of π_{t} and $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)
$$

Stationary distribution: $\pi_{t}=\pi_{t+1}=\pi$

$$
\pi\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) \quad \text { for all } \mathbf{x}^{\prime}
$$

If π exists, it is unique (specific to $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$)
In equilibrium, expected "outflow" = expected "inflow"

Detailed balance

"Outflow" = "inflow" for each pair of states:

$$
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \quad \text { for all } \mathbf{x}, \mathbf{x}^{\prime}
$$

Detailed balance \Rightarrow stationarity:

$$
\begin{aligned}
\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =\sum_{\mathbf{x}} \pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right) \sum_{\mathbf{x}} q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Gibbs sampling

Sample each variable in turn, given all other variables
Sampling X_{i}, let $\overline{\mathbf{X}}_{i}$ be all other nonevidence variables Current values are x_{i} and $\overline{\mathbf{x}}_{i}$; e is fixed
Transition probability is given by

$$
q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=q\left(x_{i}, \overline{\mathbf{x}}_{i} \rightarrow x_{i}^{\prime}, \overline{\mathbf{x}}_{i}\right)=P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right)
$$

This gives detailed balance with true posterior $P(\mathbf{x} \mid \mathbf{e})$:

$$
\begin{aligned}
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =P(\mathbf{x} \mid \mathbf{e}) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right)=P\left(x_{i}, \overline{\mathbf{x}}_{i} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) \\
& =P\left(x_{i} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) P\left(\overline{\mathbf{x}}_{i} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) \quad \text { (chain rule) } \\
& =P\left(x_{i} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) P\left(x_{i}^{\prime}, \overline{\mathbf{x}}_{i} \mid \mathbf{e}\right) \quad \text { (chain rule backwards) } \\
& =q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \pi\left(\mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right)
\end{aligned}
$$

Performance of approximation algorithms

Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$
Relative approximation: $\frac{|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$
Relative \Rightarrow absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$)
Randomized algorithms may fail with probability at most δ
Polytime approximation: poly $\left(n, \epsilon^{-1}, \log \delta^{-1}\right)$
Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta<0.5$
(Absolute approximation polytime with no evidence-Chernoff bounds)

