Basics of Probability

Sample spaces, events and probabilities

Begin with a set Ω-the sample space
e.g., 6 possible rolls of a die.
$\omega \in \Omega$ is a sample point/possible world/atomic event
A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.
$0 \leq P(\omega) \leq 1$
$\sum_{\omega} P(\omega)=1$
e.g., $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$.

An event A is any subset of Ω

$$
P(A)=\sum_{\{\omega \in A\}} P(\omega)
$$

E.g., $P($ die roll $<4)=P(1)+P(2)+P(3)=1 / 6+1 / 6+1 / 6=1 / 2$

Random variables

A random variable is a function from sample points to some range, e.g., the reals or Booleans
e.g., $\operatorname{Odd}(1)=$ true.
P induces a probability distribution for any r.v. X :

$$
P\left(X=x_{i}\right)=\sum_{\left\{\omega: X(\omega)=x_{i}\right\}} P(\omega)
$$

e.g., $P(O d d=$ true $)=P(1)+P(3)+P(5)=1 / 6+1 / 6+1 / 6=1 / 2$

Propositions

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B :

$$
\text { event } a=\text { set of sample points where } A(\omega)=\text { true }
$$

$$
\text { event } \neg a=\text { set of sample points where } A(\omega)=\text { false }
$$

$$
\text { event } a \wedge b=\text { points where } A(\omega)=\text { true and } B(\omega)=\text { true }
$$

Often in applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point $=$ propositional logic model

$$
\text { e.g., } A=\text { true, } B=\text { false, or } a \wedge \neg b \text {. }
$$

Proposition $=$ disjunction of atomic events in which it is true

$$
\begin{aligned}
& \text { e.g., }(a \vee b) \equiv(\neg a \wedge b) \vee(a \wedge \neg b) \vee(a \wedge b) \\
& \Rightarrow P(a \vee b)=P(\neg a \wedge b)+P(a \wedge \neg b)+P(a \wedge b)
\end{aligned}
$$

Why use probability?

The definitions imply that certain logically related events must have related probabilities

$$
\text { E.g., } P(a \vee b)=P(a)+P(b)-P(a \wedge b)
$$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)

Cavity $=$ true is a proposition, also written cavity
Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉

Weather = rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded)
e.g., $\operatorname{Temp}=21.6$; also allow, e.g., $T e m p<22.0$.

Arbitrary Boolean combinations of basic propositions

Prior probability

Prior or unconditional probabilities of propositions e.g., $P($ Cavity $=$ true $)=0.1$ and $P($ Weather $=$ sunny $)=0.72$
correspond to belief prior to arrival of any (new) evidence
Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=\langle 0.72,0.1,0.08,0.1\rangle(\text { normalized, i.e., sums to } 1)
$$

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $\mathbf{P}($ Weather, Cavity $)=$ a 4×2 matrix of values:

Weather $=$	sunny	rain	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Probability for continuous variables

Express distribution as a parameterized function of value: $P(X=x)=U[18,26](x)=$ uniform density between 18 and 26

Here P is a density; integrates to 1 .
$P(X=20.5)=0.125$ really means

$$
\lim _{d x \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125
$$

Gaussian density

$$
P(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Conditional probability

Conditional or posterior probabilities
e.g., $P($ cavity \mid toothache $)=0.8$
i.e., given that toothache is all I know

NOT "if toothache then 80% chance of cavity"
(Notation for conditional distributions:
\mathbf{P} (Cavity \mid Toothache $)=2$-element vector of 2-element vectors)
If we know more, e.g., cavity is also given, then we have
$P($ cavity \mid toothache, cavity $)=1$
Note: the less specific belief remains valid after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
$P($ cavity \mid toothache, 49 ersWin$)=P($ cavity \mid toothache $)=0.8$
This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \text { if } P(b) \neq 0
$$

Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

A general version holds for whole distributions, e.g., $\mathbf{P}($ Weather, Cavity $)=\mathbf{P}($ Weather \mid Cavity $) \mathbf{P}($ Cavity $)$
(View as a 4×2 set of equations, not matrix mult.)
Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
\mathbf{P} & \left(X_{1}, \ldots, X_{n}\right)=\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\ldots \\
& =\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:
$P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:
$P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$
$P($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:
$P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$
$P($ cavity \backslash toothache $)=0.108+0.012+0.072+0.008+0.016+0.064=0.28$

Inference by enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Normalization

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

```
\(\mathbf{P}(\) Cavity \(\mid\) toothache \()=\alpha \mathbf{P}(\) Cavity, toothache \()\)
    \(=\alpha[\mathbf{P}(\) Cavity, toothache, catch \()+\mathbf{P}(\) Cavity, toothache,\(\neg\) catch \()]\)
    \(=\alpha[\langle 0.108,0.016\rangle+\langle 0.012,0.064\rangle]\)
    \(=\alpha\langle 0.12,0.08\rangle=\langle 0.6,0.4\rangle\)
```

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathrm{Y}-\mathrm{E}$
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \sum_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

1) Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
2) Space complexity $O\left(d^{n}\right)$ to store the joint distribution
3) How to find the numbers for $O\left(d^{n}\right)$ entries???

Independence

A and B are independent iff

$$
\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad \text { or } \quad \mathbf{P}(B \mid A)=\mathbf{P}(B) \quad \text { or } \quad \mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)
$$

\mathbf{P} (Toothache, Catch, Cavity, Weather) $=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$

32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
Absolute independence powerful but rare
Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

\mathbf{P} (Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity:
$\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$
Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$

Conditional independence contd.

Write out full joint distribution using chain rule:

$$
\begin{aligned}
& \mathbf{P}(\text { Toothache, Catch, Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch }, \text { Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
\end{aligned}
$$

I.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' theorem

Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$

$$
\Rightarrow \text { Bayes' theorem: } P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

or in distribution form

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis still very small!

Bayes' theorem and conditional independence

$\mathbf{P}($ Cavity \mid toothache \wedge catch $)$
$=\alpha \mathbf{P}($ toothache \wedge catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\alpha \mathbf{P}($ toothache \mid Cavity $) \mathbf{P}($ catch \mid Cavity $) \mathbf{P}($ Cavity $)$

This is an example of a naive Bayes model:

$$
\mathbf{P}\left(\text { Cause }, E f f f e c t_{1}, \ldots, E f f e c t_{n}\right)=\mathbf{P}(\text { Cause }) \prod_{i} \mathbf{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

Total number of parameters is linear in n

