CSE 517 Natural Language Processing Winter 2013

Language Models

Luke Zettlemoyer

Many slides from Dan Klein and Michael Collins

Overview

- The language modeling problem
- N-gram language models
- Evaluation: perplexity
- Smoothing
 - Add-N
 - Linear Interpolation
 - Discounting Methods

The Language Modeling Problem

Setup: Assume a (finite) vocabulary of words

$$V = \{the, a, man, telescope, Beckham, two, Madrid, ...\}$$

We can construct an (infinite) set of strings

$$V^{\dagger} = \{\text{the, a, the a, the fan, the man, the man with the telescope, ...}\}$$

- Data: given a *training set* of example sentences $x \in \mathcal{V}^{\dagger}$
- Problem: estimate a probability distribution

$$\sum_{x \in \mathcal{V}^{\dagger}} p(x) = 1$$

and
$$p(x) \ge 0$$
 for all $x \in \mathcal{V}^{\dagger}$

$$p(\text{the}) = 10^{-12}$$

 $p(a) = 10^{-13}$
 $p(\text{the fan}) = 10^{-12}$
 $p(\text{the fan saw Beckham}) = 2 \times 10^{-8}$
 $p(\text{the fan saw saw}) = 10^{-15}$

Question: why would we ever want to do this?

The Noisy-Channel Model

We want to predict a sentence given acoustics:

$$w^* = \arg\max_{w} P(w|a)$$

The noisy channel approach:

$$w^* = \arg\max_{w} P(w|a)$$

$$= \arg\max_{w} \frac{P(a|w)P(w)}{P(a)}$$

$$\propto \arg\max_{w} \frac{P(a|w)P(w)}{P(w)}$$

Acoustic model: Distributions over acoustic waves given a sentence

Language model:
Distributions over sequences
of words (sentences)

Acoustically Scored Hypotheses

the station signs are in deep in english	-14732
the stations signs are in deep in english	-14735
the station signs are in deep into english	-14739
the station 's signs are in deep in english	-14740
the station signs are in deep in the english	-14741
the station signs are indeed in english	-14757
the station 's signs are indeed in english	-14760
the station signs are indians in english	-14790
the station signs are indian in english	-14799
the stations signs are indians in english	-14807
the stations signs are indians and english	-14815

ASR System Components

Translation: Codebreaking?

- "Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography —methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'
 - Warren Weaver (1955:18, quoting a letter he wrote in 1947)

MT System Components

Probabilistic Language Models

- Goal: Assign useful probabilities P(x) to sentences x
 - Input: many observations of training sentences x
 - Output: system capable of computing P(x)
- Probabilities should broadly indicate plausibility of sentences
 - P(I saw a van) >> P(eyes awe of an)
 - Not grammaticality: P(artichokes intimidate zippers) ≈ 0
 - In principle, "plausible" depends on the domain, context, speaker...
- One option: empirical distribution over training sentences...

$$p(x_1 \dots x_n) = \frac{c(x_1 \dots x_n)}{N}$$
 for sentence $x = x_1 \dots x_n$

- Problem: does not generalize (at all)
- Need to assign non-zero probability to previously unseen sentences!

Unigram Models

Simplest case: unigrams

$$p(x_1 \dots x_n) = \prod_{i=1}^n p(x_i)$$

- Generative process: pick a word, pick a word, ... until you pick STOP
- As a graphical model:

- Examples:
 - [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
 - [thrift, did, eighty, said, hard, 'm, july, bullish]
 - [that, or, limited, the]
 - []
 - [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a, they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay, however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers, advancers, half, between, nasdaq]
- Big problem with unigrams: P(the the the) >> P(I like ice cream)!

Bigram Models

Condition on previous single word:

$$p(x_1 \dots x_n) = \prod_{i=1}^n p(x_i|x_{i-1})$$

- Generative process: pick START, pick a word conditioned on previous one, repeat until to pick STOP
- Graphical Model:

- Any better?
 - [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]
 - [outside, new, car, parking, lot, of, the, agreement, reached]
 - [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty, seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of, american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious, teaching]
 - [this, would, be, a, record, november]
- But, what is the cost?

Higher Order N-grams?

Please close the door

Please close the first window on the left

198015222 the first 194623024 the same 168504105 the following 158562063 the world

. . .

14112454 the door

23135851162 the *

197302 close the window 191125 close the door 152500 close the gap 116451 close the thread 87298 close the deal

3785230 close the *

3380 please close the door 1601 please close the window 1164 please close the new 1159 please close the gate

. . .

0 please close the first

13951 please close the *

N-Gram Model Decomposition

Exact decomposition: law of conditional probability

$$p(x_1 \dots x_n) = p(x_1) \prod_{i=2}^n p(x_i | x_1 \dots x_{i-1})$$

- Impractical to condition on everything before
 - P(??? | Turn to page 134 and look at the picture of the) ?
- k-gram models (k>1): condition on k-1 previous words

$$p(x_1 \dots x_n) = \prod_{i=1}^n q(x_i|x_{i-(k-1)} \dots x_{i-1})$$
 where $x_i \in \mathcal{V} \cup \{STOP\}$ and $x_1 \dots x_{k-1} = START$

• Learning: estimate the distributions $q(x_i|x_{i-(k-1)}...x_{i-1})$

N-Gram Model Parameters

- The parameters of an n-gram model:
 - Maximum likelihood estimate: relative frequency

$$q_{ML}(w) = \frac{c(w)}{c(v)}, \quad q_{ML}(w|v) = \frac{c(w,v)}{c(v)}, \quad q_{ML}(w|u,v) = \frac{c(w,u,v)}{c(u,v)}, \quad \dots$$

where c is the empirical counts on a training set

- General approach
 - Take a training set X and a test set X'
 - Compute an estimate of the qs from X
 - Use it to assign probabilities to other sentences, such as those in X'

198015222 the first 194623024 the same **Training Counts** 168504105 the following 158562063 the world

14112454 the door

23135851162 the *

$$q(\text{door}|\text{the}) = \frac{14112454}{2313581162} = 0.0006$$

Regular Languages?

- N-gram models are (weighted) regular languages
 - Many linguistic arguments that language isn't regular.
 - Long-distance effects: "The computer which I had just put into the machine room on the fifth floor ____."
 - Recursive structure
 - Why CAN we often get away with n-gram models?

PCFG LM (later):

- [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .]
- [It, could, be, announced, sometime, .]
- [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]

More N-Gram Examples

Unigram

- To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
- Every enter now severally so, let
- Hill he late speaks; or! a more to leg less first you enter
- Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Measuring Model Quality

- The goal isn't to pound out fake sentences!
 - Obviously, generated sentences get "better" as we increase the model order
 - More precisely: using ML estimators, higher order is always better likelihood on train, but not test
- What we really want to know is:
 - Will our model prefer good sentences to bad ones?
 - Bad ≠ ungrammatical!
 - Bad ≈ unlikely
 - Bad = sentences that our acoustic model really likes but aren't the correct answer

Measuring Model Quality

- The Shannon Game:
 - How well can we predict the next word?

When I eat pizza, I wipe off the _____

Many children are allergic to _____

I saw a _____

grease 0.5
sauce 0.4
dust 0.05
....
mice 0.0001
....
the 1e-100

- Unigrams are terrible at this game. (Why?)
- How good are we doing?

Compute per word log likelihood (M words, m test sentences s_i):

$$l = \frac{1}{M} \sum_{i=1}^{m} \log p(s_i)$$

Measuring Model Quality

But, we usually report perplexity

$$2^{-l}$$
 where $l = \frac{1}{M} \sum_{i=1}^{m} \log p(s_i)$

- Lower is better!
- Example: $|\mathcal{V}| = N$ and $q(w|\ldots) = \frac{1}{N}$
 - uniform model → perplexity is N
- Interpretation: effective vocabulary size (accounting for statistical regularities)
- Typical values for newspaper text:
 - Uniform: 20,000; Unigram: 1000s, Bigram: 700-1000, Trigram: 100-200
- Important note:
 - It's easy to get bogus perplexities by having bogus probabilities that sum to more than one over their event spaces. Be careful in homeworks!

Measuring Model Quality (Speech)

Word Error Rate (WER)

WER: 4/7

Correct answer: Andy saw a part of the movie

And he saw apart of the movie Recognizer output:

- The "right" measure:
 - Task error driven
 - For speech recognition
 - For a specific recognizer!
- = 57%

 Common issue: intrinsic measures like perplexity are easier to use, but extrinsic ones are more credible

Sparsity

- Problems with n-gram models:
 - New words appear all the time:
 - Synaptitute
 - **1**32,701.03
 - multidisciplinarization
 - New n-grams: even more often

- Types (words) vs. tokens (word occurrences)
- Broadly: most word types are rare ones
- Specifically:
 - Rank word types by token frequency
 - Frequency inversely proportional to rank
- Not special to language: randomly generated character strings have this property (try it!)
- This is particularly problematic when...
 - Training set is small (does this happen for language modeling?)
 - Transferring domains: e.g., newswire, scientific literature, Twitter

Number of Words

Parameter Estimation

Maximum likelihood estimates won't get us very far

$$q_{ML}(w) = \frac{c(w)}{c(v)}, \quad q_{ML}(w|v) = \frac{c(w,v)}{c(v)}, \quad q_{ML}(w|u,v) = \frac{c(w,u,v)}{c(u,v)}, \quad \dots$$

- Clear bias / variance tradeoff
- Need to smooth these estimates
- General method (procedurally)
 - Take your empirical counts
 - Modify them in various ways to improve estimates
- General method (mathematically)
 - Often can give estimators a formal statistical interpretation ... but not always
 - Approaches that are mathematically obvious aren't always what works

3516 wipe off the excess 1034 wipe off the dust 547 wipe off the sweat 518 wipe off the mouthpiece

. . .

120 wipe off the grease 0 wipe off the sauce 0 wipe off the mice

.____

28048 wipe off the *

Smoothing

We often want to make estimates from sparse statistics:

P(w | denied the)
3 allegations

2 reports

1 claims

1 request

7 total

Smoothing flattens spiky distributions so they generalize better

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total

- Very important all over NLP (and ML more generally), but easy to do badly!
- Question: what is the best way to do it?

Smoothing: Add-One, Etc.

Classic solution: add counts (Laplace smoothing)

$$q_{add-\delta}(w) = \frac{c(w) + \delta}{\sum_{w'} (c(w') + \delta)}$$

- Add-one smoothing especially often talked about
- For a bigram distribution, can add counts shaped like the unigram:

$$q_{uni-\delta}(w|v) = \frac{c(v,w) + \delta q_{ML}(w)}{\left(\sum_{w'} c(v,w')\right) + \delta}$$

- Can consider hierarchical formulations: trigram is recursively centered on smoothed bigram estimate, etc. [MacKay and Peto, 94]
- Bayesian: Can be derived from Dirichlet / multinomial conjugacy prior shape shows up as pseudo-counts
- Problem: works quite poorly!

Linear Interpolation

- Problem: $q_{ML}(w|u,v)$ is supported by few counts
- Classic solution: mixtures of related, denser histories:

$$q(w|u,v) = \lambda_3 q_{ML}(w|u,v) + \lambda_2 q_{ML}(w|v) + \lambda_1 q_{ML}(w)$$

- Is this a well defined distribution?
 - Yes, if all λ_i≥0 and they sum to 1
- The mixture approach tends to work better than add-δ approach for several reasons
 - Can flexibly include multiple back-off contexts
 - Good ways of learning the mixture weights with EM (later)
 - Not entirely clear why it works so much better
- All the details you could ever want: [Chen and Goodman, 98]

Held-Out Data

Important tool for optimizing how models generalize:

Training Data

Held-Out Data

Test Data

- Set a small number of hyperparameters that control the degree of smoothing by maximizing the (log-)likelihood of held-out data
- Can use any optimization technique (line search or EM usually easiest)
- Examples:

$$q_{uni-\delta}(w|v) = \frac{c(v,w) + \delta q_{ML}(w)}{\left(\sum_{w'} c(v,w')\right) + \delta}$$

$$q(w|u,v) = \lambda_3 q_{ML}(w|u,v) + \lambda_2 q_{ML}(w|v) + \lambda_1 q_{ML}(w)$$

Held-Out Reweighting

- What's wrong with add-d smoothing?
- Let's look at some real bigram counts [Church and Gale 91]:

Count in 22M Words	Actual c* (Next 22M)	Add-one's c*	Add-0.0000027's c*
1	0.448	2/7e-10	~1
2	1.25	3/7e-10	~2
3	2.24	4/7e-10	~3
4	3.23	5/7e-10	~4
5	4.21	6/7e-10	~5

Mass on New	9.2%	~100%	9.2%
Ratio of 2/1	2.8	1.5	~2

- Big things to notice:
 - Add-one vastly overestimates the fraction of new bigrams
 - Add-0.0000027 vastly underestimates the ratio 2*/1*
- One solution: use held-out data to predict the map of c to c*

Absolute Discounting

Idea 1: observed n-grams occur more in training than they will later:

Count in 22M Words	Future c* (Next 22M)
1	0.448
2	1.25
3	2.24
4	3.23

- Absolute Discounting (Bigram case)
 - No need to actually have held-out data; just subtract 0.75 (or some d)

$$c^*(v, w) = c(v, w) - 0.75$$
 and $q(w|v) = \frac{c^*(v, w)}{c(v)}$

But, then we have "extra" probability mass

$$\alpha(v) = 1 - \sum_{w} \frac{c^*(v, w)}{c(v)}$$

Question: How to distribute α between the unseen word?

Katz Backoff

Absolute discounting, with backoff to unigram estimates

$$c^*(v, w) = c(v, w) - d$$
 $\alpha(v) = 1 - \sum_{w} \frac{c^*(v, w)}{c(v)}$

Define the words into seen and unseen

$$\mathcal{A}(v) = \{ w : c(u, w) > 0 \} \quad \mathcal{B}(v) = \{ w : c(u, w) = 0 \}$$

Now, backoff to maximum likelihood unigram estimates for unseen words

$$q_{BO}(w|v) = \begin{cases} \frac{c^*(v,w)}{c(v)} & \text{if } w \in \mathcal{A}(v) \\ \alpha(v) \times \frac{q_{ML}(w)}{\sum_{w' \in \mathcal{B}(v)} q_{ML}(w')} & \text{if } w \in \mathcal{B}(v) \end{cases}$$

- Can consider hierarchical formulations: trigram is recursively backed off to Katz bigram estimate, etc
- Can also have multiple count thresholds (instead of just 0 and >0)

Good-Turing Discounting

- Question: why the same d for all n-grams?
- Good-Turing Discounting invented during WWII by Alan Turing and later published by Good. Frequency estimates were needed for Enigma code-breaking effort.
- Let n_r be the number of n-grams x for which c(x) = r
- Now, use the modified counts

$$c^*(x) = (r+1)\frac{n_{r+1}}{n_r}$$
 iff $c(x) = r, r > 0$

Then, our estimate of the missing mass is:

$$\alpha(v) = \frac{n_1}{N}$$

Where N is the number of tokens in the training set

Kneser-Ney Backoff

- Idea: Type-based fertility
 - Shannon game: There was an unexpected ____?
 - delay?
 - Francisco?
 - "Francisco" is more common than "delay"
 - ... but "Francisco" (almost) always follows "San"
 - ... so it's less "fertile"
- Solution: type-continuation probabilities
 - In the back-off model, we don't want the unigram estimate p_{ML}
 - Instead, want the probability that w is allowed in a novel context
 - For each word, count the number of bigram types it completes

$$P_{\mathsf{C}}(w) \propto |w' : c(w', w) > 0|$$

- KN smoothing repeatedly proven effective
- [Teh, 2006] shows it is a kind of approximate inference in a hierarchical Pitman-Yor process (and other, better approximations are possible)

What Actually Works?

Trigrams and beyond:

- Unigrams, bigrams generally useless
- Trigrams much better (when there's enough data)
- 4-, 5-grams really useful in MT, but not so much for speech

Discounting

 Absolute discounting, Good-Turing, held-out estimation, Witten-Bell, etc...

Context counting

- Kneser-Ney construction of lower-order models
- See [Chen+Goodman] reading for tons of graphs...

[Graphs from Joshua Goodman]

Data vs. Method?

Having more data is better...

- ... but so is using a better estimator
- Another issue: N > 3 has huge costs in speech recognizers

Tons of Data?

Beyond N-Gram LMs

- Lots of ideas we won't have time to discuss:
 - Caching models: recent words more likely to appear again
 - Trigger models: recent words trigger other words
 - Topic models
- A few recent ideas
 - Syntactic models: use tree models to capture long-distance syntactic effects [Chelba and Jelinek, 98]
 - Discriminative models: set n-gram weights to improve final task accuracy rather than fit training set density [Roark, 05, for ASR; Liang et. al., 06, for MT]
 - Structural zeros: some n-grams are syntactically forbidden, keep estimates at zero [Mohri and Roark, 06]
 - Bayesian document and IR models [Daume 06]