cse 521: design and analysis of algorithms

Time \& place
I, Th $1200-120 \mathrm{pm}$ in CSE 203
People
Prof: James Lee (jrl@cs)
TA: Thach Nguyen (ncthach@cs)
Book
Algorithm Design by Kleinberg and Tardos

Grading
50\% homework (approx. bi-weekly problem sets)
20\% take-home midterm
30\% in-class final exam
Website: http://www.cs.washington.edu/52I/

something a little bit different

assume you know: asymptotic analysis basic probability basic linear algebra dynamic programming recursion / divide-and-conquer graph traversal (BFS, DFS, shortest paths)

so that we can cover:
nearest-neighbor search
spectral algorithms (e.g. pagerank) online algorithms (multiplicative update) geometric hashing

+ graph algorithms, data structures, network flow, hashing, NP-completeness, linear programming, approx. algorithms

case study: nearest-neighbor search

formal model

Problem:

Given an input database $\mathrm{D} \subseteq \mathrm{U}$:
preprocess D (fast, space efficiently) so that queries $\mathrm{q} \in \mathrm{U}$ can be answered very quickly, i.e. return

Goal:

Quickly respond with the database object most similar to the query.
$\mathbf{U}=$ universe (set of objects)
$\mathrm{d}(\mathrm{x}, \mathrm{y})=$ distance between two objects
Assumptions:

$$
\begin{array}{ll}
d(x, x)=0 & \text { for all } x \in U \\
d(x, y)=d(y, x) & \text { for all } x, y \in U
\end{array}
$$

(symmetry)

$$
\begin{aligned}
& \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y}) \\
& \text { for all } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}
\end{aligned}
$$

(triangle inequality)
$a^{*} \in D$ such that $d\left(q, a^{*}\right)=\min \{d(q, x): x \in D\}$

other considerations

Problem:
Given an input database $\mathrm{D} \subseteq \mathrm{U}$:
preprocess D (fast, space efficiently) so that queries $q \in U$ can be answered very quickly, i.e. return
$a^{*} \in D$ such that $d\left(q, a^{*}\right)=\min \{d(q, x): x \in D\}$

Is it expensive to compute $d(x, y)$?

ridiculousse

Should we treat the distance function and objects as a black box?

primitive methods

[Brute force: Time]
Compute d(query, x) for every
object $\mathrm{x} \in \mathrm{D}$, and return the closest.
Takes time \approx
|D | • (distance comp. time)
[Brute force: Space]
Pre-compute best response to every possible query $\mathrm{q} \in \mathbf{U}$.

Takes space \approx
$|\mathrm{U}| \cdot($ object size)
Dream performance:
$O(\log |D|)$ query time
$O(|D|)$ space

something hard, something easy

All pairwise distances are equal:

$$
d(x, y)=1 \text { for all } x, y \in D
$$

Problem:
... so that queries $q \in U$ can be answerd quickly, i.e. return $a^{*} \in D$ such that $d\left(q, a^{*}\right)=\min \{d(q, x): x \in D\}$

All pairwise distances are equal:

$$
d(x, y)=1 \text { for all } x, y \in D
$$

ϵ-Problem:

Can sometimes solve exact NNS by first finding a good approximation
... so that queries $q \in U$ can be answerd quickly, i.e. return $a \in D$ such that $d(q, a) \leq(1+\epsilon) d(q, D)$

Let's suppose that $\mathrm{U}=[0,1]$ (real numbers between 0 and I).

Answer: Sort the points $D \subseteq U$ in the preprocessing stage.
To answer a query $\mathrm{q} \in \mathrm{U}$, we can just do binary search.
To support insertions/deletions in $O(\log |D|)$ time, can use a BST. (balanced search tree)
How much power did we need?
Can we do this just using distance computations $\mathrm{d}(\mathrm{x}, \mathrm{y})$? (for $\mathrm{x}, \mathrm{y} \in \mathrm{D}$)
Basic idea: Make progress by throwing "a lot" of stuff away.

Definition: The ball of radius α around $\mathrm{x} \in \mathrm{D}$ is

$$
B(x, \alpha)=\{y \in D: d(x, y) \leq \alpha\}
$$

Definition: The ball of radius α around $\mathrm{x} \in \mathrm{D}$ is

$$
B(x, \alpha)=\{y \in D: d(x, y) \leq \alpha\}
$$

extending the basic idea

Greedy construction algorithm:

Start with $N=\emptyset$.
As long as there exists an $\mathrm{x} \in \mathrm{D}$
with $\mathrm{d}(\mathrm{x}, \mathrm{N})>\alpha$, add x to N .
So for every $\alpha>0$, we can construct an α-net $\mathrm{N}(\alpha)$ in $\mathbf{O}\left(\mathbf{n}^{2}\right)$ time, where $\mathrm{n}=|\mathrm{D}|$.

Definition: An α-net in D is a subset $\mathrm{N} \subseteq \mathrm{D}$ such that
I) Separation: For all $\mathrm{x}, \mathrm{y} \in \mathrm{N}, \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq \alpha$
2) Covering: For all $\mathrm{x} \in \mathrm{D}, \mathrm{d}(\mathrm{x}, \mathrm{N}) \leq \alpha$

basic data structure: hierarchical nets

basic data structure: hierarchical nets

Data structure:

$$
\begin{aligned}
d_{\max } & =\max \{d(x, y): x, y \in D\} \\
d_{\min } & =\min \{d(x, y): x \neq y \in D\}
\end{aligned}
$$

For $i=\log \left(d_{\min }\right), \log \left(d_{\min }\right)+1, \ldots, \log \left(d_{\max }\right)$,
let N_{i} be a 2^{i}-net.
For each $x \in N_{i}, L_{x, i}=B\left(x, 2^{i+1}\right) \cap N_{i-1}$.

algorithm: traverse the nets

Data structure:

$$
\begin{aligned}
d_{\max } & =\max \{d(x, y): x, y \in D\} \\
d_{\min } & =\min \{d(x, y): x \neq y \in D\}
\end{aligned}
$$

For $i=\log \left(d_{\min }\right), \log \left(d_{\min }\right)+1, \ldots, \log \left(d_{\max }\right)$,
let N_{i} be a 2^{i}-net.
For each $x \in N_{i}, L_{x, i}=B\left(x, 2^{i+1}\right) \cap N_{i-1}$.
Algorithm: Given input query $q \in U$,
Let CurrentPoint $=$ only point of $N_{\log \left(d_{\max }\right)}$.
For $i=\log \left(d_{\max }\right)-1, \log \left(d_{\max }\right)-2, \ldots, \log \left(d_{\min }\right)$,
CurrentPoint $=$ closest point to q in $L_{\text {CurrentPoint }, i}$

algorithm: traverse the nets

Algorithm: Given input query $q \in U$,
Let CurrentPoint $=$ only point of $N_{\log \left(d_{\max }\right)}$.
For $i=\log \left(d_{\max }\right)-1, \log \left(d_{\max }\right)-2, \ldots, \log \left(d_{\min }\right)$,
CurrentPoint $=$ closest point to q in $L_{\text {CurrentPoint }, i}$

running time analysis?

Query time $=O\left(\log \left(\frac{d_{\max }}{d_{\text {min }}}\right)\right) \max \left\{\left|L_{x, i}\right|: x \in D, i\right\}$

$$
L_{x, i}=B\left(x, 2^{i+1}\right) \cap N_{i-1}
$$

Nearly uniform point set: For $u, v \in L_{x, i} \quad d(u, v) \in\left[2^{i^{-1},}, 2^{i+2}\right]$

Algorithm: Given input query $\mathrm{q} \in \mathbf{U}$,
Let CurrentPoint $=$ only point of $N_{\log \left(d_{\text {max }}\right)}$.
For $i=\log \left(d_{\max }\right)-1, \log \left(d_{\max }\right)-2, \ldots, \log \left(d_{\min }\right)$,
CurrentPoint $=$ closest point to q in $L_{\text {CurrentPoint }, i}$

curs'ed hamsters

All pairwise distances are equal:
$d(x, y)=1$ for all $x, y \in D$

intrinsic dimensionality

Given a metric space ($\mathbf{X}, \mathrm{d})$, let $\lambda(\mathbf{X}, \mathrm{d})$ be the smallest constant λ such that every ball in X can be covered by λ balls of half the radius.

The intrinsic dimension of (X, d) is the value

$$
\operatorname{dim}(X, d)=\log _{2} \lambda(X, d)
$$

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic dimension of the data...

$$
\left[\begin{array}{rl}
\text { Query time } & =O\left(\log \left(\frac{d_{\max }}{d_{\min }}\right)\right) \max \left\{\left|L_{x, i}\right|: x \in D, i\right\} \\
L_{x, i} & =B\left(x, 2^{i+1}\right) \cap N_{i-1}
\end{array}\right.
$$

Claim: $\left|\mathrm{L}_{\mathrm{x}, \mathrm{i}}\right| \leq[\lambda(\mathrm{X}, \mathrm{d})]^{3}$
Proof: Suppose that $k=\left|L_{x, i}\right|$. Then we need at least k balls of radius $2^{\mathrm{i}-2}$ to cover $\mathbf{B}\left(\mathbf{x}, 2^{i+1}\right)$, because a ball of radius $\mathbf{2}^{\mathrm{i}-2}$ can cover at most one point of $\mathbf{N}_{\mathrm{i}-1}$.

But now we claim that (for any r) every ball of radius r in X can be covered by at most $[\lambda(X, d)]^{3}$ balls of radius $r / 8$, hence $k \leq[\lambda(X, d)]^{3}$.

intrinsic dimensionality

But now we claim that (for any \mathbf{r}) every ball of radius r in X can be covered by at most $[\lambda(X, d)]^{3}$ balls of radius $r / 8$, hence $k \leq[\lambda(X, d)]^{3}$.

A ball of radius r can be covered λ balls of radius $\mathrm{r} / 2$, hence by λ^{2} balls of radius $r / 4$, hence by λ^{3} balls of radius $\mathrm{r} / 8$.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic dimension of the data...

$$
\left[\begin{array}{rl}
\text { Query time } & =O\left(\log \left(\frac{d_{\max }}{d_{\min }}\right)\right) \max \left\{\left|L_{x, i}\right|: x \in D, i\right\} \\
L_{x, i} & =B\left(x, 2^{i+1}\right) \cap N_{i-1}
\end{array}\right.
$$

Claim: $\left|\mathrm{L}_{\mathrm{x}, \mathrm{i}}\right| \leq[\lambda(\mathrm{X}, \mathrm{d})]^{3}$
Proof: Suppose that $k=\left|L_{x, i}\right|$. Then we need at least k balls of radius $2^{\mathrm{i}-2}$ to cover $\mathbf{B}\left(\mathbf{x}, 2^{i+1}\right)$, because a ball of radius $\mathbf{2}^{\mathrm{i}-2}$ can cover at most one point of $\mathbf{N}_{\mathrm{i}-1}$.

But now we claim that (for any r) every ball of radius r in X can be covered by at most $[\lambda(X, d)]^{3}$ balls of radius $r / 8$, hence $k \leq[\lambda(X, d)]^{3}$.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic dimension of the data...

$$
\left[\begin{array}{c}
\text { Query time }=O\left(\log \left(\frac{d_{\max }}{d_{\min }}\right)\right)[\lambda(X, d)]^{3} \\
L_{x, i}=B\left(x, 2^{i+1}\right) \cap N_{i-1}
\end{array}\right.
$$

Claim: $\left|\mathrm{L}_{\mathrm{x}, \mathrm{i}}\right| \leq[\lambda(\mathrm{X}, \mathrm{d})]^{3}$
Proof: Suppose that $k=\left|L_{x, i}\right|$. Then we need at least k balls of radius $2^{\mathrm{i}-2}$ to cover $\mathbf{B}\left(\mathbf{x}, 2^{i+1}\right)$, because a ball of radius $\mathbf{2}^{\mathrm{i}-2}$ can cover at most one point of $\mathrm{N}_{\mathrm{i}-1}$.

But now we claim that (for any r) every ball of radius r in X can be covered by at most $[\lambda(X, d)]^{3}$ balls of radius $r / 8$, hence $k \leq[\lambda(X, d)]^{3}$.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic dimension of the data...

$$
\text { Query time }=O\left(\log \left(\frac{d_{\max }}{d_{\min }}\right)\right)[\lambda(X, d)]^{3}
$$

- Generalization of binary search (where dimension $=\mathbf{1}$)
- Works in arbitrary metric spaces with small intrinsic dimension
- Didn't have to think in order to "index" our database
- Shows that the hardest part of nearest-neighbor search is

- Only gives approximation to the nearest neighbor
- Next time: Fix this; fix time, fix space + data structure prowess
- In the future: Opening the black box; NNS in high dimensional spaces
- Bonus: Algorithm is completely intrinsic (e.g. isomap)

