cse 521: design and analysis of algorithms

Time & place T, Th 1200-120 pm in CSE 203

People

Prof: James Lee (jrl@cs)
TA: Thach Nguyen (ncthach@cs)

Book

Algorithm Design by Kleinberg and Tardos

Grading

- 50% homework (approx. bi-weekly problem sets)
- **20%** take-home midterm
- 30% in-class final exam

Website: http://www.cs.washington.edu/521/

something a little bit different

assume you know:

asymptotic analysis basic probability basic linear algebra dynamic programming recursion / divide-and-conquer graph traversal (BFS, DFS, shortest paths)

CSE 521: Design and Analysis of Algorithms Homework #1
The stuff you should already know. March 31, 2009.
Due: April 9, 2009. Reading: Kleinberg-Tardos, pages 1-335.
The problems are worth 10 points each. If I ask you to write down an algorithm, use pseudocode.
 Asymptotic analysis. Sort the following functions from asymptotically smallest to largest, indicating tiss if there are any:
$n, \log \log \log^* n, \log^* \log n, \log^* n, n \log n, \log(n \log n), n^{n/\log n}, n^{\log n}, (\log n)^n, (\log n)^{\log n}, (1+\frac{1}{n})^n$
$2^{\sqrt{\log n}\log\log n}, 2^n, n^{\log\log n}, n^{1/1000}, (1+\frac{1}{1000})^n, (1-\frac{1}{1000})^n, (\log n)^{1000}, \log_{1000} n, (\log 1000)^n, (\log 1000$
[To simplify notation, write $f(n) \ll g(n)$ to mean $f(n) = o(g(n))$ and $f(n) \equiv g(n)$ to mean $f(n) = \Theta(g(n))$. For example, the functions $n^2, n, {\binom{n}{2}}, n^2$ are sorted as $n \ll n^2 \equiv {\binom{n}{2}} \ll n^3$.]
 Linearity of expectation. Suppose that x₁, x₂,, x_n ∈ [0, 1] are chosen uniformly and independently at random. We are going to analyze a very simple sorting algorithm which sorts the number (x₁,, x_n) in O(n) expected inter.
There are going to be n buckets B_1, B_2, \ldots, B_n . For a real number x, we use $[x]$ to denote the smallest integer greater than x. The algorithm is as follows.
(a) For $i = 1, 2,, n$ put x_i into bucket B_j where $j = \lceil x_i \cdot n \rceil$. (b) For $j = 1, 2,, n$ sort B_j . (c) Concentrate the sorted buckets.
Part 1: Give a brief description of how you would implement the steps of the algorithms so that the total running time is $O(n) + \sum_{n=0}^{\infty} O(B_0 ^2).$
j=1 Part 2: Show that the expected running time (over the random choice of inputs) of your alcorithm is O(m).
 Dynamic programming. Consider two strings X and Y over the alphabet (A, C, G, T). The edit datance between X and Y is the minimum cost of a sequence of edit operations which turns X into Y. The operations are as of follows.
 (a) Insert a character (cost 2). (b) Delete a character (cost 2).
(c) Replace a character (cost 1).
Design and formally analyze an algorithm for computing the edit distance (i.e. the minimum cost) between X and Y which runs in time $O(X \cdot Y)$. Here, $ X $ denotes the length (number of character) in the string X.
due: april 9th

so that we can cover:

nearest-neighbor search spectral algorithms (e.g. pagerank) online algorithms (multiplicative update) geometric hashing

+ graph algorithms, data structures, network flow, hashing, NP-completeness,

linear programming, approx. algorithms

case study: nearest-neighbor search

universe of objects

formal model

Problem:

Given an input database $D \subseteq U$: preprocess D (fast, space efficiently) so that queries $q \in U$ can be answered very quickly, i.e. return $a^* \in D$ such that $d(q,a^*) = \min \{ d(q, x) : x \in D \}$

Goal:

Quickly respond with the database object most similar to the query.

U = universe (set of objects) d(x,y) = distance between two objects

Assumptions:

 $d(x,x) = 0 \qquad \text{for all } x \in U$

d(x,y) = d(y,x) for all x,y ∈ U (symmetry)

 $d(x,y) \le d(x,z) + d(z,y)$ for all $x,y,z \in U$ (triangle inequality)

other considerations

Problem:

Given an input database $D \subseteq U$: preprocess D (fast, space efficiently) so that queries $q \in U$ can be answered very quickly, i.e. return $a^* \in D$ such that $d(q,a^*) = \min \{ d(q, x) : x \in D \}$

Should we treat the distance function and objects as a black box?

primitive methods

[Brute force: Time] Compute **d(query, x)** for every object $\mathbf{x} \in \mathbf{D}$, and return the closest. Takes time \approx $|D| \cdot (distance comp. time)$ [Brute force: Space] **<u>Pre</u>**-compute best response to every possible query $\mathbf{q} \in \mathbf{U}$. Takes space \approx **|U|** · (object size) **Dream performance:** $O(\log |D|)$ query time space

@istockphoto.com/GlobalP

All pairwise distances are equal: d(x,y) = 1 for all $x,y \in D$

"CURSE OF DIMENSIONALITY"

Problem:

... so that queries $q \in U$ can be answerd quickly, i.e. return $a^* \in D$ such that $d(q,a^*) = \min \{ d(q,x) : x \in D \}$

All pairwise distances are equal: d(x,y) = 1 for all $x,y \in D$

ϵ-Problem:

"CURSE OF DIMENSIONALITY"

Can sometimes solve exact NNS by first finding a good approximation

... so that queries $\mathbf{q} \in \mathbf{U}$ can be answerd quickly, i.e. return $\mathbf{a} \in \mathbf{D}$ such that $\mathbf{d}(\mathbf{q},\mathbf{a}) \leq (\mathbf{1} + \epsilon) \mathbf{d}(\mathbf{q},\mathbf{D})$

something easier

Let's suppose that U = [0,1] (real numbers between 0 and 1).

Answer: Sort the points $D \subseteq U$ in the preprocessing stage. To answer a query $q \in U$, we can just do binary search. To support insertions/deletions in $O(\log |D|)$ time, can use a BST. (balanced search tree)

How much power did we need? Can we do this just using distance computations d(x,y)? (for $x,y \in D$) Basic idea: Make progress by throwing "a lot" of stuff away.

extending the basic idea

Definition: The ball of radius α around $x \in D$ is

 $B(x,\alpha) = \{y \in D : d(x,y) \le \alpha\}$

extending the basic idea

Definition: The **ball of radius** α around $x \in D$ is

$$B(x,\alpha) = \{y \in D : d(x,y) \le \alpha\}$$

extending the basic idea

Greedy construction algorithm:

Start with $N = \emptyset$. As long as there exists an $x \in D$ with $d(x,N) > \alpha$, add x to N.

So for every $\alpha > 0$, we can construct an α -net $N(\alpha)$ in $O(n^2)$ time, where n = |D|.

Definition: An α -net in D is a subset N \subseteq D such that 1) Separation: For all $x,y \in N$, $d(x,y) \ge \alpha$ 2) Covering: For all $x \in D$, $d(x,N) \le \alpha$

basic data structure: hierarchical nets

Search algorithm:

Use the α -net to find a radius 2α ball. Use the $\alpha/2$ -net to find a radius α ball. Use the $\alpha/4$ -net to find a radius $\alpha/2$ ball.

Data structure:

$$d_{\max} = \max \{ d(x, y) : x, y \in D \}$$

$$d_{\min} = \min \{ d(x, y) : x \neq y \in D \}$$

For $i = \log(d_{\min}), \log(d_{\min}) + 1, \dots, \log(d_{\max}),$
let N_i be a 2^i -net.
For each $\in N$ $i \in D(-2^{i+1}) \in N$

For each $x \in N_i$, $L_{x,i} = B(x, 2^{i+1}) \cap N_{i-1}$.

Data structure:

$$d_{\max} = \max \{ d(x, y) : x, y \in D \}$$

$$d_{\min} = \min \{ d(x, y) : x \neq y \in D \}$$

For $i = \log(d_{\min}), \log(d_{\min}) + 1, \dots, \log(d_{\max}),$
let N_i be a 2^i -net.
For each $x \in N_i, L_{x,i} = B(x, 2^{i+1}) \cap N_{i-1}.$

Algorithm: Given input query $q \in U$,

Let CurrentPoint = only point of $N_{\log(d_{\max})}$. For $i = \log(d_{\max}) - 1$, $\log(d_{\max}) - 2$, ..., $\log(d_{\min})$, CurrentPoint = closest point to q in $L_{\text{CurrentPoint},i}$

algorithm: traverse the nets

Algorithm: Given input query $q \in U$,

Let CurrentPoint = only point of $N_{\log(d_{\max})}$. For $i = \log(d_{\max}) - 1$, $\log(d_{\max}) - 2$, ..., $\log(d_{\min})$, CurrentPoint = closest point to q in $L_{\text{CurrentPoint},i}$

running time analysis?

Query time =
$$O\left(\log\left(\frac{d_{\max}}{d_{\min}}\right)\right) \max\left\{|L_{x,i}| : x \in D, i\right\}$$

 $L_{x,i} = B(x, 2^{i+1}) \cap N_{i-1}$
Nearly uniform point set:
For $u, v \in L_{x,i}$, $d(u,v) \in [2^{i-1}, 2^{i+2}]$

Algorithm: Given input query $q \in U$,

Let CurrentPoint = only point of $N_{\log(d_{\max})}$. For $i = \log(d_{\max}) - 1$, $\log(d_{\max}) - 2$, ..., $\log(d_{\min})$, CurrentPoint = closest point to q in $L_{\text{CurrentPoint},i}$

curs'ed hamsters

All pairwise distances are equal: d(x,y) = 1 for all $x,y \in D$

"CURSE OF DIMENSIONALITY"

intrinsic dimensionality

Given a metric space (X,d), let $\lambda(X,d)$ be the smallest constant λ such that every ball in X can be covered by λ balls of half the radius.

The intrinsic dimension of (X,d) is the value

 $\dim(X,d) = \log_2 \lambda(X,d)$

Query time =
$$O\left(\log\left(\frac{d_{\max}}{d_{\min}}\right)\right) \max\left\{|L_{x,i}| : x \in D, i\right\}$$

 $L_{x,i} = B(x, 2^{i+1}) \cap N_{i-1}$

Claim: $|\mathbf{L}_{x,i}| \leq [\lambda(\mathbf{X},\mathbf{d})]^3$

Proof: Suppose that $\mathbf{k} = |\mathbf{L}_{x,i}|$. Then we need at least \mathbf{k} balls of radius 2^{i-2} to cover $\mathbf{B}(\mathbf{x}, 2^{i+1})$, because a ball of radius 2^{i-2} can cover at most one point of \mathbf{N}_{i-1} .

But now we claim that (for any **r**) every ball of radius **r** in **X** can be covered by at most $[\lambda(X,d)]^3$ balls of radius **r/8**, hence $k \leq [\lambda(X,d)]^3$.

intrinsic dimensionality

But now we claim that (for any **r**) every ball of radius **r** in **X** can be covered by at most $[\lambda(X,d)]^3$ balls of radius **r/8**, hence $k \leq [\lambda(X,d)]^3$.

A ball of radius **r** can be covered λ balls of radius **r/2**, hence by λ^2 balls of radius **r/4**, hence by λ^3 balls of radius **r/8**.

Query time =
$$O\left(\log\left(\frac{d_{\max}}{d_{\min}}\right)\right) \max\left\{|L_{x,i}| : x \in D, i\right\}$$

 $L_{x,i} = B(x, 2^{i+1}) \cap N_{i-1}$

Claim: $|\mathbf{L}_{x,i}| \leq [\lambda(\mathbf{X},\mathbf{d})]^3$

Proof: Suppose that $\mathbf{k} = |\mathbf{L}_{x,i}|$. Then we need at least \mathbf{k} balls of radius 2^{i-2} to cover $\mathbf{B}(\mathbf{x}, 2^{i+1})$, because a ball of radius 2^{i-2} can cover at most one point of \mathbf{N}_{i-1} .

But now we claim that (for any **r**) every ball of radius **r** in **X** can be covered by at most $[\lambda(X,d)]^3$ balls of radius **r/8**, hence $k \leq [\lambda(X,d)]^3$.

Query time =
$$O\left(\log\left(\frac{d_{\max}}{d_{\min}}\right)\right) [\lambda(X,d)]^3$$

 $L_{x,i} = B(x, 2^{i+1}) \cap N_{i-1}$

Claim: $|\mathbf{L}_{x,i}| \leq [\lambda(\mathbf{X},\mathbf{d})]^3$

Proof: Suppose that $\mathbf{k} = |\mathbf{L}_{x,i}|$. Then we need at least \mathbf{k} balls of radius 2^{i-2} to cover $\mathbf{B}(\mathbf{x}, 2^{i+1})$, because a ball of radius 2^{i-2} can cover at most one point of \mathbf{N}_{i-1} .

But now we claim that (for any **r**) every ball of radius **r** in **X** can be covered by at most $[\lambda(X,d)]^3$ balls of radius **r/8**, hence $\mathbf{k} \leq [\lambda(X,d)]^3$.

Query time =
$$O\left(\log\left(\frac{d_{\max}}{d_{\min}}\right)\right) [\lambda(X, d)]^3$$

- Generalization of binary search (where dimension = 1)
- Works in arbitrary metric spaces with small intrinsic dimension
- Didn't have to think in order to "index" our database
- Shows that the hardest part of nearest-neighbor search is

- Only gives approximation to the nearest neighbor
- Next time: Fix this; fix time, fix space + data structure prowess
- In the future: Opening the black box; NNS in high dimensional spaces
- Bonus: Algorithm is completely intrinsic (e.g. isomap)

