
CSE 521: Design and Analysis of Algorithms Midterm Exam
Covers everything so far. May 14th, 2009.

Due: IN CLASS, May 21st, 2009.

You are allowed to use notes that you have taken in class, notes and slides posted on the class
web page, the Kleinberg-Tardos book, and the provided homework solutions, but nothing (and no
one) else. There is no collaboration allowed on this exam.

You should do any 4 out of the following 5 problems. All problems are worth the same number
of points.

Problems

1. Given a graph G = (V, E), a vertex cover of G is a set of vertices C ⊆ V such that each edge
of G has at least one endpoint in C.

(a) Consider the following algorithm for vertex cover.

i. Start with C ← ∅.
ii. Pick an edge e = {u, v} such that {u, v} ∩C = ∅, and add an arbitrary endpoint of e

to C.
iii. If C is a vertex cover, halt; else go to step (ii).

Give an instance on which this algorithm may return a set which is Ω(n) times bigger
than the optimal (smallest) vertex cover.

(b) Now suppose we randomize the algorithm: In step (ii), we throw a random endpoint of
e = {u, v} into C. If k is the size of an optimal vertex cover of G, show that E [|C|] ≤ 2k,
i.e. this is a 2-approximation algorithm.

2. Alice wants to throw a party and is deciding who to call. She has n people to choose from,
and she has made up a list of which pairs of these people know each other. She wants to pick
as many people as possible, subject to two constraints: At the party, each person should have
at least five other people they know, and five other people that they don’t know.

Give an efficient algorithm that takes as input a list of n people and the list of pairs who
know each other and outputs the best choice of party invitees.

3. Let G = (V, E) be a directed graph, with source s ∈ V and sink t ∈ V , and non-negative edge
capacities. Give a polynomial-time algorithm to decide whether G has a unique minimum s-t
cut, i.e. one whose capacity is strictly less than every other s-t cut.

Hint: Consider the residual graph at the termination of the Ford-Fulkerson algorithm, and
define minimum s-t cuts based on this graph in two natural ways. When are these two cuts
actually the same cut?

1

4. A subset of the nodes of a graph G is a dominating set if every node of G is adjacent to some
node in the subset. Let

DOMINATING-SET = {〈G, k〉 : G has a dominating set with k nodes}.

Show that DOMINATING-SET is NP-complete by giving a reduction from VERTEX-
COVER.

5. In a satisfiable system of linear inequalities

a11x1 + · · ·+ a1nxn ≤ b1

...
an1x1 + · · ·+ annxn ≤ bn

we describe the jth inequality as forced-equal if it is satisfied with equality by every solution
x = (x1, . . . , xn) of the system. Equivalently,

∑
i ajixi ≤ bj is not forced-equal if there exists

an x = (x1, . . . , xn) that satisfies the whole system and such that
∑

i ajixi < bj.

For example, in

x1 + x2 ≤ 2

−x1 − x2 ≤ −2

x1 ≤ 1

−x2 ≤ 0

the first two inequalities are forced-equal, while the third and fourth are not. A solution x to
the system is called characteristic if, for every inequality I that is not forced-equal, x satisfies
I without equality. In the instance above, such a solution is (x1, x2) = (−1, 3), for which
x1 < 1 and −x2 < 0 while x1 + x2 = 2 and −x1 − x2 = 2.

(a) Show that any satisfiable system has a characteristic solution.

(b) Given a satisfiable system of linear inequalities, show how to use linear programming to
determine which inequalities are forced-equal, and to find a characteristic solution.

2

