Due: IN CLASS, May 21st, 2009.

You are allowed to use notes that you have taken in class, notes and slides posted on the class web page, the Kleinberg-Tardos book, and the provided homework solutions, but nothing (and no one) else. There is no collaboration allowed on this exam.

You should do any $\mathbf{4}$ out of the following 5 problems. All problems are worth the same number of points.

Problems

1. Given a graph $G=(\mathrm{V}, \mathrm{E})$, a vertex cover of G is a set of vertices $\mathrm{C} \subseteq \mathrm{V}$ such that each edge of G has at least one endpoint in C.
(a) Consider the following algorithm for vertex cover.
i. Start with $C \leftarrow \emptyset$.
ii. Pick an edge $e=\{u, v\}$ such that $\{u, v\} \cap C=\emptyset$, and add an arbitrary endpoint of e to C .
iii. If C is a vertex cover, halt; else go to step (ii).

Give an instance on which this algorithm may return a set which is $\Omega(n)$ times bigger than the optimal (smallest) vertex cover.
(b) Now suppose we randomize the algorithm: In step (ii), we throw a random endpoint of $e=\{u, v\}$ into C. If k is the size of an optimal vertex cover of G, show that $\mathbb{E}[|C|] \leq 2 k$, i.e. this is a 2 -approximation algorithm.
2. Alice wants to throw a party and is deciding who to call. She has n people to choose from, and she has made up a list of which pairs of these people know each other. She wants to pick as many people as possible, subject to two constraints: At the party, each person should have at least five other people they know, and five other people that they don't know.
Give an efficient algorithm that takes as input a list of n people and the list of pairs who know each other and outputs the best choice of party invitees.
3. Let $G=(V, E)$ be a directed graph, with source $s \in V$ and $\operatorname{sink} t \in V$, and non-negative edge capacities. Give a polynomial-time algorithm to decide whether G has a unique minimum s-t cut, i.e. one whose capacity is strictly less than every other s-t cut.
Hint: Consider the residual graph at the termination of the Ford-Fulkerson algorithm, and define minimum s-t cuts based on this graph in two natural ways. When are these two cuts actually the same cut?
4. A subset of the nodes of a graph G is a dominating set if every node of G is adjacent to some node in the subset. Let

DOMINATING-SET $=\{\langle\mathrm{G}, \mathrm{k}\rangle: \mathrm{G}$ has a dominating set with k nodes $\}$.
Show that DOMINATING-SET is NP-complete by giving a reduction from VERTEXCOVER.
5. In a satisfiable system of linear inequalities

we describe the j th inequality as forced-equal if it is satisfied with equality by every solution $x=\left(x_{1}, \ldots, x_{n}\right)$ of the system. Equivalently, $\sum_{i} a_{j i} x_{i} \leq b_{j}$ is not forced-equal if there exists an $x=\left(x_{1}, \ldots, x_{n}\right)$ that satisfies the whole system and such that $\sum_{i} a_{j i} x_{i}<b_{j}$.
For example, in

$$
\begin{aligned}
x_{1}+x_{2} & \leq 2 \\
-x_{1}-x_{2} & \leq-2 \\
x_{1} & \leq 1 \\
-x_{2} & \leq 0
\end{aligned}
$$

the first two inequalities are forced-equal, while the third and fourth are not. A solution x to the system is called characteristic if, for every inequality I that is not forced-equal, x satisfies I without equality. In the instance above, such a solution is $\left(x_{1}, x_{2}\right)=(-1,3)$, for which $x_{1}<1$ and $-x_{2}<0$ while $x_{1}+x_{2}=2$ and $-x_{1}-x_{2}=2$.
(a) Show that any satisfiable system has a characteristic solution.
(b) Given a satisfiable system of linear inequalities, show how to use linear programming to determine which inequalities are forced-equal, and to find a characteristic solution.

