Due: April 9, 2009.
Reading: Kleinberg-Tardos, pages 1-335.

The problems are worth 10 points each. If I ask you to write down an algorithm, use pseudocode.

1. Asymptotic analysis. Sort the following functions from asymptotically smallest to largest, indicating ties if there are any:
$n, \log n, \log \log ^{*} n, \log ^{*} \log n, \log ^{*} n, n \log n, \log (n \log n), n^{n / \log n}, n^{\log n},(\log n)^{n},(\log n)^{\log n},\left(1+\frac{1}{n}\right)^{n}$
$2^{\sqrt{\log n \log \log n}}, 2^{n}, n^{\log \log n}, n^{1 / 1000},\left(1+\frac{1}{1000}\right)^{n},\left(1-\frac{1}{1000}\right)^{n},(\log n)^{1000}, \log _{1000} n,(\log 1000)^{n}, 1$
[To simplify notation, write $f(n) \ll g(n)$ to mean $f(n)=o(g(n))$ and $f(n) \equiv g(n)$ to mean $f(n)=\Theta(g(n))$. For example, the functions $n^{2}, n,\binom{n}{2}, n^{3}$ are sorted as $n \ll n^{2} \equiv\binom{n}{2} \ll n^{3}$.]
2. Linearity of expectation. Suppose that $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$ are chosen uniformly and independently at random. We are going to analyze a very simple sorting algorithm which sorts the numbers $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ in $\mathrm{O}(\mathrm{n})$ expected time.
There are going to be n buckets $B_{1}, B_{2}, \ldots, B_{n}$. For a real number x, we $u s e\lceil x\rceil$ to denote the smallest integer greater than x. The algorithm is as follows.
(a) For $\mathfrak{i}=1,2, \ldots, n$ put x_{i} into bucket B_{j} where $\mathfrak{j}=\left\lceil x_{i} \cdot n\right\rceil$.
(b) For $\mathfrak{j}=1,2, \ldots, n$ sort B_{j}.
(c) Concatenate the sorted buckets.

Part 1: Give a brief description of how you would implement the steps of the algorithms so that the total running time is

$$
\mathrm{O}(\mathrm{n})+\sum_{j=1}^{n} \mathrm{O}\left(\left|\mathrm{~B}_{j}\right|^{2}\right)
$$

Part 2: Show that the expected running time (over the random choice of inputs) of your algorithm is $O(n)$.
3. Dynamic programming. Consider two strings X and Y over the alphabet $\{A, C, G, T\}$. The edit distance between X and Y is the minimum cost of a sequence of edit operations which turns X into Y . The operations are as follows.
(a) Insert a character (cost 2).
(b) Delete a character (cost 2).
(c) Replace a character (cost 1).

Design and formally analyze an algorithm for computing the edit distance (i.e. the minimum cost) between X and Y which runs in time $\mathrm{O}(|\mathrm{X}| \cdot|\mathrm{Y}|)$. Here, $|\mathrm{X}|$ denotes the length (number of characters) in the string X.

Figure 1: The first algorithm (blit then recurse) in action.
4. Divide and conquer (borrowed from Jeff Erickson). Some graphics hardware includes support for an operation called blit, or block transfer, which quickly copies a rectangular chunk of a pixelmap (a two-dimensional array of pixel values) from one location to another. This is a two-dimensional version of the standard C library function memcpy().
Suppose we want to rotate an $n \times n$ pixelmap 90° clockwise. One way to do this is to split the pixelmap into four $n / 2 \times n / 2$ blocks, move each block to its proper position using a sequence of five blits, then recursively rotate each block. Alternately, we can first recursively rotate the blocks and then blit them into place afterwards. See Figures 1 and 2.

Figure 2: Two algorithms for rotating a pixelmap. Black arrows indicate blitting the blocks into place. White arrows indicate recursively rotating the blocks.

In the following questions, assume n is a power of two.
(a) Prove that both versions of the algorithm are correct.
(b) Exactly how many blits does the algorithm perform?
(c) What is the algorithm's running time if a $k \times k$ blit takes $O\left(k^{2}\right)$ time?
(d) What if a $\mathrm{k} \times \mathrm{k}$ blit takes only $\mathrm{O}(\mathrm{k})$ time?
5. Graph algorithms. Write an algorithm that, given an undirected graph $G=(V, E)$ in adjacency list representation, detects whether G contains a cycle. Your algorithm should run in $O(m+n)$ time where $m=|E|$ and $n=|V|$.

