CSE521 Homework 4

Reading: Lecture notes and KT Chapter 11

Problem 1. A legal k-coloring of a graph is an assignment of colors $1,2, \ldots, k$ to the vertices of the graph such that no two adjacent vertices receive the same color. A graph is k-colorable if there exists a legal k-coloring of its vertices. The problem of finding a legal k-coloring of a k-colorable graph is NP-complete for $k \geq 3$.

1. Prove that graphs with maximum degree Δ are $(\Delta+1)$-colorable. Also give a polynomial-time algorithm for finding a $(\Delta+1)$-coloring.
2. Give a polynomial-time algorithm for 2-coloring a bipartite graph.
3. Using parts (a) and (b) above, give a polynomial-time algorithm for finding an $O(\sqrt{n})$-coloring of a 3-colorable graph.
Hint: Verify and use the fact that the neighborhood of any vertex in a 3-colorable graph is 2-colorable.

Problem 2. Consider the following variant of the set cover problem. We are given a universe U of n elements and a collection $\mathcal{F}=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets of U. The goal is to pick a subfamily \mathcal{G} of \mathcal{F} to maximize the number of elements of U which are covered exactly once by this subfamily.

1. Suppose each element of U is present in exactly k sets. Give a randomized algorithm that outputs a subfamily which uniquely covers a number of elements which is in expectation at least $1 / e$ times the optimal value.
How does your analysis change if each element u is contained in k_{u} of the sets, where $k \leq k_{u} \leq 2 k$ for all $u \in U$?
2. Using the above algorithm and classifying elements into suitable groups, obtain an $O(\log B)$-approximation algorithm for the general problem, where B is the maximum number of sets to which any element of U belongs.

Problem 3. Show that the following Quadratic Programming problem is NP-hard. You are given a set of equations $E_{1}, E_{2}, \ldots, E_{t}$ in n variables $x_{1}, x_{2}, \ldots, x_{n}$, where E_{k} is of the form $\sum_{i} a_{i, k} x_{i}^{2}+\sum_{i, j} b_{i, j, k} x_{i} x_{j}+$ $\sum_{i} d_{i, k} x_{i}=c_{k}$ where $a_{i, k}, b_{i, j, k}, d_{i, k}, c_{k}$ are given integers. The problem is to decide if there is an assignment of real numbers v_{1}, \ldots, v_{n} to the variables x_{1}, \ldots, x_{n} which makes all the equations simultaneously true.

