
CSE521 Homework 1 Solution
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Problem 2.

1. Step (a) and (c) can both be implemented in O(n) time in the obvious ways. The running time∑n
i=1O

(
B2

i

)
of step (b) is achieved by sorting each bucket by any popular sorting algorithm (e.g.

bubble sort or insertion sort). Thus, the algorithm can be implemented to achieve the running time
O(n) +

∑n
i=1O(B2

i ) as required.

2. By linearity of expectation, we have:

E

O(n) +

n∑
j=1

O(B2
j )

 = O(n) +

n∑
j=1

E
(
O(B2

j )
)

(1)

= O(n) +

n∑
j=1

O
(
E
(
B2

j

))
(2)

Thus, the problem reduces to proving that E
(
B2

j

)
= O(1). To this end, let Xij be the indicator that

the ith input falls into the jth bucket, i.e.

Xij =

{
1 if xi ∈ Bj

0 otherwise
(3)
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Then, by linearity of expectation:
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where (7) follows from the fact that the two events “xi ∈ Bj” and “xk ∈ Bj” are independent; and (8)
follows from the fact that xi and xk are both chosen uniformly at random in [0, 1]. The last inequality
completes the proof.

Problem 3. Given a sequence Z, let Z[i] denote the ith character of Z and Z[: i] denote the subsequence
containing the first ith characters of Z. Given two sequences X and Y, let V[i, j] denote the edit distance of
X[: i] and Y[: j]. Consider the matches of X[i] and Y[j]. There are 3 cases:

1. X[i] is matched with Y[j]. Then V[i, j] can be decomposed into: (i) the cost to match X[i] and Y[j], and
(ii) the cost to match X[: i−1] and Y[: j−1]. Therefore, in this case, V[i, j] = V[i−1, j−1]+c(X[i], Y[j])
where c(α,β) is the cost of replacing α by β, which is 1 if α 6= β and 0 otherwise.

2. X[i] is matched with Y[k] for k < j. Then V[i, j] can be decomposed into: (i) the cost to insert Y[j] into
X after X[i] or delete Y[j] from Y – these two costs are the same in this question, but in general, we
can take the smaller of the two, and (ii) the cost to match X[: i] and X[: j− 1]. Therefore, in this case,
V[i, j] = V[i, j− 1] + 2.

3. Y[j] is matched with X[k] for k < i. Similar to the above case, we have V[i, j] = V[i− 1, j] + 2.

Since these cases cover all the situations of matching X[: i] and Y[: j], we have the following recurrent
formula

V[i, j] = min (V[i− 1, j− 1] + c(X[i], X[j]), V[i− 1, j] + 2, V[j− 1, i] + 2) (10)

From (10), we can design a dynamic programing algorithm to compute the table V[i, j] for 1 6 i 6 |X|

and 1 6 j 6 |Y|. The edit distance between X and Y is V[|X|, |Y|]. The algorithm’s running time is O (|X| · |Y|),
since the computation of each cell of the table using (10) takes O (1) time.

Problem 4.

1. We will prove the correctness of the first algorithm by induction. The correctness of the second
algorithm follows similarly.

• For n = 1 and 2, the algorithm’s correctness can be verified easily.

• Assume that the algorithm works for n/2, we show that it works for n.
Set the coordinate’s origin at the center of the n× n pixel map. Let M and N be the pixel map
before and after the rotation. We need to prove that for all −n/2 <6 x 6 n/2,−n/2 6 y 6 n/2,
M[x, y] = N[y,−x]. Assume that x 6 0 and y > 0 (the other cases are symmetric). Let M ′ be
the resulted pixel map after the blit steps. Then M(x, y) = M ′[x + n/2, y]. By the induction
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hypothesis, after the rotation step, we have M ′[x+n/2, y] = N[x ′, y ′], where (x ′, y ′) is the image
of (x + n/2, y) in the −90-degree rotation around (n/4, n/4). Simple algebra shows that x ′ = y

and y ′ = −x, thus completes the proof.

2. Let f(n) be the number of blits the first algorithm performs on a n× n pixel map. Then

f(1) = 0 (11)
f(n) = 4f(n/2) + 5 for n > 1 (12)

This recurrent formula yields f(n) = 5(n2 − 1)/3.

The number of blits the second algorithm performs follows exactly the same recurrent formula. Thus
the second algorithm performs the same number of blits with the first one.

3. Let T(n) be the running time of the first algorithm on a n× n pixel map. We have:

T(1) = 0 (13)

T(n) = 4T(n/2) + 5O

(
n2

4

)
for n > 1 (14)

By Master Theorem, we have T(n) = O
(
n2 logn

)
.

The running time of the second algorithm can be analyzed similarly.

4. Similar to above, the running time T(n) of the first algorithm on a n × n pixel map satisfies the
following recurrent formula:

T(1) = 0 (15)

T(n) = 4T(n/2) + 5O
(n
2

)
for n > 1 (16)

Again, by Master Theorem, we have T(n) = O
(
n2
)
.

The running time of the second algorithm can be analyzed similarly.

Problem 5. The problem can be solved by a breath-first traversal of (each connected component of)
the graph. Every time we visit a node, we mark it as visited. If we ever re-visit a visited node, the graph
contains a cycle. Otherwise, it’s a forest. This ways, each node is visited at most once (except for possibly
one node in case the graph does contain a cycle) and each edge is visited at most twice. Thus, the running
time is O (n+m).

3


