CSE521 Homework 1 Solution

Problem 1.

$$
\begin{aligned}
& \left(1-\frac{1}{1000}\right)^{n} \ll 1 \equiv\left(1+\frac{1}{n}\right)^{n} \ll \log \log ^{*} n \ll \log ^{*} n \equiv \log ^{*} \log n \\
& \ll \log n \equiv \log (n \log n) \equiv \log _{1000} n \ll(\log n)^{1000} \ll 2^{\sqrt{\log n \log \log n}} \ll n^{1 / 100} \\
& \ll n<n \log n \ll n^{\log \log n} \equiv(\log n)^{\log n} \ll n^{\log n} \\
& \ll\left(1+\frac{1}{1000}\right)^{n} \ll 2^{n} \equiv n^{n / \log n} \ll(\log 1000)^{n} \ll(\log n)^{n}
\end{aligned}
$$

Problem 2.

1. Step (a) and (c) can both be implemented in $O(n)$ time in the obvious ways. The running time $\sum_{i=1}^{n} \mathrm{O}\left(\mathrm{B}_{i}^{2}\right)$ of step (b) is achieved by sorting each bucket by any popular sorting algorithm (e.g. bubble sort or insertion sort). Thus, the algorithm can be implemented to achieve the running time $O(n)+\sum_{i=1}^{n} O\left(B_{i}^{2}\right)$ as required.
2. By linearity of expectation, we have:

$$
\begin{align*}
\mathbf{E}\left(\mathrm{O}(n)+\sum_{j=1}^{n} O\left(B_{j}^{2}\right)\right) & =O(n)+\sum_{j=1}^{n} \mathbf{E}\left(O\left(B_{j}^{2}\right)\right) \tag{1}\\
& =O(n)+\sum_{j=1}^{n} O\left(\mathbf{E}\left(B_{j}^{2}\right)\right) \tag{2}
\end{align*}
$$

Thus, the problem reduces to proving that $\mathbf{E}\left(B_{j}^{2}\right)=O(1)$. To this end, let $X_{i j}$ be the indicator that the ith input falls into the jth bucket, i.e.

$$
X_{i j}= \begin{cases}1 & \text { if } x_{i} \in B_{j} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

Then, by linearity of expectation:

$$
\begin{align*}
\mathbf{E}\left(B_{j}^{2}\right) & =\mathbf{E}\left(\left(\sum_{i=1}^{n} x_{i j}\right)^{2}\right) \tag{4}\\
& =\sum_{i=1}^{n} \mathbf{E}\left(X_{i j}^{2}\right)+2 \sum_{i \neq k} \mathbf{E}\left(X_{i j} x_{k j}\right) \tag{5}\\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(x_{i} \in B_{j}\right)+2 \sum_{i \neq k} \operatorname{Pr}\left(x_{i} \in B_{j} \text { and } x_{k} \in B_{j}\right) \tag{6}\\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(x_{i} \in B_{j}\right)+2 \sum_{i \neq k} \operatorname{Pr}\left(x_{i} \in B_{j}\right) \operatorname{Pr}\left(x_{k} \in B_{j}\right) \tag{7}\\
& =n \cdot \frac{1}{n}+n(n-1) \frac{1}{n^{2}} \tag{8}\\
& \leqslant 2 . \tag{9}
\end{align*}
$$

where (7) follows from the fact that the two events " $x_{i} \in B_{j}$ " and " $x_{k} \in B_{j}$ " are independent; and (8) follows from the fact that x_{i} and x_{k} are both chosen uniformly at random in $[0,1]$. The last inequality completes the proof.

Problem 3. Given a sequence Z, let $Z[i]$ denote the i th character of Z and $Z[: i]$ denote the subsequence containing the first ith characters of Z. Given two sequences X and Y, let $V[i, j]$ denote the edit distance of $X[: i]$ and $\mathrm{Y}[: j]$. Consider the matches of $\mathrm{X}[i]$ and $\mathrm{Y}[j]$. There are 3 cases:

1. $\mathrm{X}[\mathrm{i}]$ is matched with $\mathrm{Y}[j]$. Then $\mathrm{V}[\mathrm{i}, \mathrm{j}]$ can be decomposed into: (i) the cost to match $\mathrm{X}[\mathrm{i}]$ and $\mathrm{Y}[j]$, and (ii) the cost to match $X[: i-1]$ and $Y[: j-1]$. Therefore, in this case, $V[i, j]=V[i-1, j-1]+c(X[i], Y[j])$ where $c(\alpha, \beta)$ is the cost of replacing α by β, which is 1 if $\alpha \neq \beta$ and 0 otherwise.
2. $\mathrm{X}[\mathrm{i}]$ is matched with $\mathrm{Y}[\mathrm{k}]$ for $\mathrm{k}<\mathrm{j}$. Then $\mathrm{V}[\mathrm{i}, \mathrm{j}]$ can be decomposed into: (i) the cost to insert $\mathrm{Y}[\mathrm{j}]$ into X after $X[i]$ or delete $\mathrm{Y}[\mathrm{j}]$ from Y - these two costs are the same in this question, but in general, we can take the smaller of the two, and (ii) the cost to match $X[$: $i]$ and $X[: j-1]$. Therefore, in this case, $V[i, j]=V[i, j-1]+2$.
3. $\mathrm{Y}[\mathrm{j}]$ is matched with $\mathrm{X}[\mathrm{k}]$ for $\mathrm{k}<\mathrm{i}$. Similar to the above case, we have $\mathrm{V}[\mathrm{i}, \mathrm{j}]=\mathrm{V}[\mathrm{i}-1, \mathrm{j}]+2$.

Since these cases cover all the situations of matching $X[: i]$ and $Y[: j]$, we have the following recurrent formula

$$
\begin{equation*}
V[i, j]=\min (V[i-1, j-1]+c(X[i], X[j]), V[i-1, j]+2, V[j-1, i]+2) \tag{10}
\end{equation*}
$$

From (10), we can design a dynamic programing algorithm to compute the table $V[i, j]$ for $1 \leqslant i \leqslant|X|$ and $1 \leqslant \mathfrak{j} \leqslant|\mathrm{Y}|$. The edit distance between X and Y is $\mathrm{V}[|\mathrm{X}|,|\mathrm{Y}|]$. The algorithm's running time is $\mathrm{O}(|\mathrm{X}| \cdot|\mathrm{Y}|)$, since the computation of each cell of the table using (10) takes $\mathrm{O}(1)$ time.

Problem 4.

1. We will prove the correctness of the first algorithm by induction. The correctness of the second algorithm follows similarly.

- For $\mathfrak{n}=1$ and 2 , the algorithm's correctness can be verified easily.
- Assume that the algorithm works for $n / 2$, we show that it works for n.

Set the coordinate's origin at the center of the $n \times n$ pixel map. Let M and N be the pixel map before and after the rotation. We need to prove that for all $-n / 2<\leqslant x \leqslant n / 2,-n / 2 \leqslant y \leqslant n / 2$, $M[x, y]=N[y,-x]$. Assume that $x \leqslant 0$ and $y \geqslant 0$ (the other cases are symmetric). Let M^{\prime} be the resulted pixel map after the blit steps. Then $M(x, y)=M^{\prime}[x+n / 2, y]$. By the induction
hypothesis, after the rotation step, we have $M^{\prime}[x+n / 2, y]=N\left[x^{\prime}, y^{\prime}\right]$, where $\left(x^{\prime}, y^{\prime}\right)$ is the image of $(x+n / 2, y)$ in the -90 -degree rotation around ($n / 4, n / 4$). Simple algebra shows that $x^{\prime}=y$ and $y^{\prime}=-x$, thus completes the proof.
2. Let $f(n)$ be the number of blits the first algorithm performs on a $n \times n$ pixel map. Then

$$
\begin{align*}
& f(1)=0 \tag{11}\\
& f(n)=4 f(n / 2)+5 \quad \text { for } n>1 \tag{12}
\end{align*}
$$

This recurrent formula yields $f(n)=5\left(n^{2}-1\right) / 3$.
The number of blits the second algorithm performs follows exactly the same recurrent formula. Thus the second algorithm performs the same number of blits with the first one.
3. Let $T(n)$ be the running time of the first algorithm on a $n \times n$ pixel map. We have:

$$
\begin{array}{ll}
T(1)=0 \\
T(n)=4 T(n / 2)+5 O\left(\frac{n^{2}}{4}\right) \quad \text { for } n>1 \tag{14}
\end{array}
$$

By Master Theorem, we have $T(n)=O\left(n^{2} \log n\right)$.
The running time of the second algorithm can be analyzed similarly.
4. Similar to above, the running time $T(n)$ of the first algorithm on a $n \times n$ pixel map satisfies the following recurrent formula:

$$
\begin{align*}
\mathrm{T}(1) & =0 \tag{15}\\
\mathrm{~T}(\mathrm{n}) & =4 \mathrm{~T}(\mathrm{n} / 2)+50\left(\frac{n}{2}\right) \tag{16}
\end{align*} \quad \text { for } \mathrm{n}>1 .
$$

Again, by Master Theorem, we have $T(n)=O\left(n^{2}\right)$.
The running time of the second algorithm can be analyzed similarly.

Problem 5. The problem can be solved by a breath-first traversal of (each connected component of) the graph. Every time we visit a node, we mark it as visited. If we ever re-visit a visited node, the graph contains a cycle. Otherwise, it's a forest. This ways, each node is visited at most once (except for possibly one node in case the graph does contain a cycle) and each edge is visited at most twice. Thus, the running time is $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

