
CSE 521: Design and Analysis of Algorithms I Fall 2023

Lecture 14: Cheeger’s Inequality cont., Spectral Clustering
Lecturer: Shayan Oveis Gharan 11/14/23

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

15.1 Cheeger’s Inequality (continued)

15.1.1 Review from last class

Definition 15.1 (Conductance). Given a graph G = (V,E) with V partitioned into S and S̄, the conductance
of S is defined as:

ϕ(S) =
|E(S, S̄)|
vol(S)

The conductance of G is defined as:

ϕ(G) = min
vol(S)≤ vol(V )

2

ϕ(S)

Question: Why aren’t we looking at the mincut as a measure of conductance? Why are we normalizing by

the size/volume of S in |E(S,S̄)|
vol(S) ?

Answer: Consider a network of roads. One road in this network is a highway that connects two major
cities. Another is your driveway that connects your house to the rest of the network. If cut either of these
roads, it will divide the network into two disconnected sub-networks, so these are two mincuts of our graph
each with size 1. However, the two roads have very different levels of conductance. The numbers of drivers
inconvenienced by the shutdown of a highway is much greater than those inconvenienced by the shutdown
of your driveway.

15.1.2 Cheeger’s Inequality

The following theorem is one of the fundamental inequalities in spectral graph theory.

Theorem 15.2 (Cheeger’s Inequality). For any graph G,

λ2/2 ≤ ϕ(G) ≤
√
2λ2

where λ2 is the 2nd smallest eigenvalue of L̃.

Cheeger’s inequality relates the combinatorial property of conductance to a spectral property, the 2nd small-
est eigenvalue. Observe that in the extreme case where λ2 = 0, we also have ϕ(G) = 0 and vice versa.

A crucial fact about the above inequality is that it does not depend on the size of G, n. It implies that if G
has a “small” 2nd eigenvalue, then it is partitionable, whereas if the 2nd eigenvalue is “large” the graph is
similar to a complete graph and it is not partitionable.
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The proof of the right side of Cheeger’s inequality, ϕ(G) ≤
√
2λ2 is constructive, and it shows that the

spectral partitioning algorithm always returns a set S such that vol(S) ≤ vol(V )/2 and

ϕ(S) ≤
√

2λ2 ≤
√

4ϕ(G).

We now discuss several consequences of the above theorem for a special family of graphs.

Definition 15.3 (Expander Graphs). Expander graphs are sparse highly connected graphs with large 2nd
eigenvalues, i.e., λ2 ≥ Ω(1). So, the can be seen as a sparse complete graphs which have λ2 = 1. It turns
out that most of the graphs are expanders, because a random d-regular graph satisfies λ2 ≥ 1− 2√

d

Expander graphs are the easiest instances to use for many of the optimization problems (see PS4 for appli-
cations to the max cut problem). They are frequently used in coding theory (see PS4) and in psuedorandom
number generators. In Problem Set 4, we will discuss the expander mixing lemma, which states that Ex-
pander Graphs are approximately the same as random graph. In words, in a d-regular expander graphs,
for every disjoint large sets S, T , |E(S, T )| is very close to the expected number of edges between S, T in a
random G(n, d/n) graph.

Definition 15.4 (Planar Graphs). A planar graph is one where all vertices can be projected onto a plane
with no crossing edges.

We know a lot about planar graphs. For example, we know that they tend to be sparse with average degrees
at most 5.

It turns out that the 2nd eigenvalue of L̃ of any planar graph is at most O(1/n).

Theorem 15.5. If G is a bounded degree planar graph, the

λ2 ≤ O(
1

n
).

Using the Cheeger’s inequality, we can show that for every bounded degree planar graph G, ϕ(G) ≤ O(1/
√
n).

In fact, by repeatedly peeling off sets of small conductance in G, we can show that every planar graph with
bounded degree has a sparse bisection, i.e., a set S ⊆ V such that vol(V )/3 ≤ vol(S) ≤ 2 vol(V )/3 and
ϕ(S) ≤ O(1/

√
n). This means that it is very easy to break a bounded degree planar graph into two sets such

that there is very small number of connections between the two. This makes planar graphs ideal candidate
for divide and conquer algorithms. We can recursively solve our problem on the two sides S, S and then
merge the solutions. Since there are only O(

√
n) edges between S, S, the merge operation can be done very

efficiently

Finally, we also note that we can generalize the task of partitioning a graph into two sets, into partitioning
a graph into k sets. Doing so, we define the k-way conductance of a graph to be:

Definition 15.6 (k-way conductance). For an integer k > 1 and a graph G, let

ϕk(G) = min
disjointS1,...,Sk

max
1≤i≤k

ϕ(S)

where the min is over all k disjoint sets S1, . . . , Sk in G.

In other words, we are interested in finding k disjoint sets such that their maximum conductance is as small
as possible. With this definition, ϕ(G) corresponds to the case k = 2.

It turns out that there is a natural generalization of Cheeger’s inequality for larger values of k.
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Theorem 15.7. For any graph G and an integer k > 2,

λk/2 ≤ ϕk(G) ≤ O(
√
λk · k2)

ϕk(G) ≤ O(
√
log k · λ2k).

Note that the second inequality is stronger than the first one only when λ2k is not much larger than λk.
Similar to Cheeger’s inequality, the proof of the right side of this inequality is constructive and provides an
algorithm to k disjoint sets with small conductance.

15.1.3 Proof of “easier side” of Cheeger’s Inequality

In this lecture we prove the easy direction of Cheeger’s inequality, i.e., we show that, for any graph G,

λ2

4
≤ ϕ(G). (15.1)

Recall that the normalized Laplacian matrix is defined as L̃ = D−1/2LD−1/2, So, the first eigenvector of L̃
is D1/21 with eigenvalue 0. This is because,

L̃(D1/21) = D−1/2LD−1/2D1/21 = D−1/2L1 = D1/20 = 0.

By Rayleigh quotient,

λ2 = min
x:x⊥D1/21

xT L̃x

xTx

= min
x:x⊥D1/21

xTD−1/2LD−1/2x

xD−1/2DD−1/2x

= min
x: x⊥D1/21
y=D−1/2x

yTLy

yDy

Note that if x ⊥ D1/21 then

0 = ⟨x,D1/21⟩ = ⟨D1/2y,D1/21⟩ = ⟨y,D1⟩

So, we can do a change variables as follows:

λ2 = min
y:y⊥D1

yTLy

yTDy
= min

y:y⊥D1

∑
i∼j(yi − yj)

2∑
i diy

2
i

. (15.2)

To prove (15.1), we need to relate this value to

ϕ(G) = min
S:vol(S)≤vol(V )/2

ϕ(S).

Let S be the best set in the RHS of above, i.e., assume ϕ(S) = ϕ(G) and vol(S) ≤ vol(V )/2. We can write,

ϕ(S) =
|E(S, S|
vol(S)

=

∑
i∼j |I [i ∈ S]− I [j ∈ S] |∑

i∈S di

=

∑
i∼j |I [i ∈ S]− I [j ∈ S] |2∑

i I [i ∈ S]
2
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To see the last identity note that the absolute value of the difference of two indicator functions is either 0 or
1, so |I [i ∈ S]− I [j ∈ S] | = |I [i ∈ S]− I [j ∈ S] |2. As usual let

1Si =

{
1 i ∈ S

0 otherwise.

Note that the above equation is very similar to (15.2) except that y = 1S is not necessarily orthogonal to
D1. In particular,

⟨1S , D1⟩ =
∑
i

1Si di =
∑
i∈S

di = vol(S) ̸= 0 (15.3)

So, we have to perturb the 1S vector and make it orthogonal to the all-ones vector. The idea is to shift
it, i.e., add a constant c to all coordinates of the vector; note that yTLy is invariant under shifts, so we
just need to show that the denominator does not change so much under a shift. Here is where we use that
vol(S) ≤ vol(V )/2.

Define y = 1S − vol(S)
vol(V )1. Then obviously, first note

⟨y,D1⟩ =
∑
i

yidi =
∑
i∈S

di −
∑
i

di
vol(S)

vol(V )
= vol(S)− vol(S) = 0.

As explained above,

yTLy =
∑
i∼j

(yi − yj)
2 =

∑
i∼j

(1S
i − 1S

j )
2 = |E(S, S)|.

Finally,

yTDy =
∑
i

y2i di ≥
∑
i∈S

(1− vol(S)/ vol(V ))2di ≥
∑
i∈S

(1/2)2di = vol(S)/4,

where in the second inequality we used that vol(S) ≤ vol(V )/2. It follows that

λ2 ≤
yTLy

yTDy
≤ |E(S, S)|

vol(S)/4
= 4ϕ(S),

where the first inequality follows by (15.3) and that ⟨y,D1⟩ = 0.

We do not prove the following lemma; interested reader can see lecture notes of more advanced courses linked
in the course website for the proof of the harder direction of Cheeger’s inequality.

Lemma 15.8. For all y such that ⟨y, 1⟩D = 0, the spectral partitioning algorithm returns S such that

ϕ(S) ≤ 2
√

yTLy
∥y∥2

D
.

The importance of the above lemma is that we don’t need to find the actual eigenvector of λ2 to use the

spectral partitioning algorithm. As long as we can approximately minimize the Rayleigh quotient, yTLy
yDy , we

can run the spectral partitioning algorithm on the approximate vector to obtain a set S of small conductance.
In the next lecture we will see how to find an approximate second eigenvector of the L̃ in almost linear time.

15.1.4 A Bad example for Spectral Partitioning Algorithm

Spectral Partitioning Algorithm does not always return the optimal solution, in fact it may return a set of
a significantly larger conductance than the optimum. Consider the following example.
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Suppose we have the graph shown in Figure 15.1. Consider 2 possible cuts of this graph. Cut 1 (shown in

red) will give a conductance value 4
2n , or O( 1n ). Cut 2 (shown in green) will give a conductance value of

n 50
n2

2n ,
or O( 1

n2 ). While Cut 2 is much better than Cut 1, SPA will return Cut 1. This is because the 2nd smallest
eigenvector of this graph is the same as the 2nd smallest eigenvector of a cycle, i.e., it maps the endpoints of
each dashed edge to the same value. Because of that the algorithm indeed returns a cut whose conductance
is n times the optimum.

Figure 15.1: A weighted graph comprised of two cycles. The conductance of the red cut is n times the
conductance of the green cut, but the spectral partitioning algorithm returns the red cut.

15.2 Spectral Clustering Algorithm

This is a brief discussion of Ng, Jordan, and Weiss [NJW02] paper on spectral clustering.

(a) Original data (b) Data after spectral clustering

Figure 15.2: Spectral clustering: before and after

Motivating Example: Suppose you want to cluster a set of points, but your points look something like
those depicted in Figure 15.2a. In this case, you want to find the green and black clusters. If you run
k-means on this data, you won’t find these clusters.

Instead, we can use SPA by creating a graph from this data by connecting points with an edge of weight

e
−∥xi−xj∥

2

σ2 ,
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where xi, xj represents any two datapoints in Rd. Note that the above Gaussian kernel is maximized if xi is
very close to xj . The parameter σ must be tuned based on the particular application in mind.

After constructing this graph, we compute the normalized Laplacian matrix and the first k eigenvectors
v1, v2, . . . , vk of the matrix (since we want a k-partition of the graph).

Then we build the spectral embedding of graph, i.e., a matrix

F =

D
− 1

2 v1
...

D− 1
2 vk

 ∈ Rk×n,

which has a column for every vertex in the graph. Now, we map each vertex of graph (or each data point) i
to a point in k dimensions corresponding to the i-th column of the above matrix. It turns out that in this
new mapping the each cluster of points will be mapped close to one another, see Figure 15.2b and we can
use k-means to find the k partition. In ?? we give a rigorous analysis of (a varaint of) this algorithm; we
show that for any graph G we can find k disjoint sets S1, . . . , Sk each of conductance O(

√
lambdakk

2). In
other words, this shows that if the graph that we construct from the data points has k small eigenvalues
then we can use k means to find a k partitioning of the graph. Also, conversely, if the first k eigenvalues of
G are not small, then there is no “good” k partitionings of G.

15.3 Power Method

We discussed in previous lectures that computing SVD takes cubic time in the size of the matrix. So, one
in general is interested in faster algorithms for computing (approximating) eigenvalues/eigenvectors of a
matrix. The Power Method is a method to approximate the largest eigenvalue of a PSD matrix M within a
multiplicative 1± ϵ factor in time linear in the number of nonzero entries of M .

Recall that a Guassian vector x ∈ Rn, is a vector of n independently chosen N (0, 1) random variable, i.e.,
for all 1 ≤ i ≤ n, xi ∼ N (0, 1).

Algorithm 1 Power Method

Input: Given a PSD matrix M ⪰ 0.
Choose a random Gaussian vector x ∈ Rn.
for j = 1→ k do

x←Mx ▷ For numerical stability, set x← x
∥x∥ ; we don’t add it here to get a simpler proof.

end for

return x, xTMx
xT x

Let y be the output vector of Algorithm 1. In our main theorem we show that y is an approximate largest
eigenvector of M .

Theorem 15.9. Given a matrix M ⪰ 0 with eigenvalues λ1 ≥ λ2 ≥ . . . λn, for any ϵ > 0 and integer k > 1
with constant probability,

yTMy

yTy
≥ λ1(1− ϵ)

1 + 10n(1− ϵ)2k
.

Note that ϵ is a parameter of choice in the above theorem (it has nothing to do with the algortihm). We
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should choose it based on the error that we can tolerate in our application. For a given ϵ, letting k = lgn
ϵ in

Algorithm 1 the RHS of the above theorem becomes λ1(1−ϵ)

1+ 1
n

.

Also, observe that the algorithm runs a loop for k iterations; each iteration is just a matrix vector product
which can be implemented in time O(nnz(M)). It follows that for any PSD matrix M we can use the above
theorem to find a vector y such that the Rayleigh quotient of y is at least (1− ϵ)λ1. The algorithm will run
in time O( 1ϵ nnz(M) log n).

Before discussing the proof of the above theorem, let us discuss two remarks:

Remark 15.10 (2nd largest eigenvalue:). Suppose we want to estimate the 2nd largest eigenvalue of M .
Then, we can first run the above algorithm to find an approximate largest eigenvector y. Then, we choose
another random Gaussian vector x. First we make x orthogonal to y by letting:

x = x− ⟨x, y

∥y∥
⟩ y

∥y∥
.

In other words, if ∥y∥ = 1, we let
x = x− ⟨x, y⟩y.

Remark 15.11 (Eigenvalues of Symmetric Matrices). Suppose that M is not PSD but it is a symmetric
matrix. Then, we can run the above algorithm on M2 which is a PSD matrix. The algorithm gives a 1± ϵ
approximation of the largest eigenvalue of M in absolute value.

Remark 15.12 (2nd Smallest eigenvalue of L̃). First of all, it turns out that the largest eigenvalue of L̃ is
at most 2. Therefore, we can turn the smallest eigenvalues of L̃ into the largest ones by working with 2I− L̃.
Note that 2I − L̃ is PSD, and the 2nd smallest eigenvalue of L̃ is the 2nd largest eigenvalue of 2I − L̃. Now,
all we need to do is to choose a Gaussian random vector x and make it orthogonal to the largest eigenvector
of 2I − L̃, and then use the power method

Recall that the smallest eigenvector of L̃ is v1 = D1/21. This is because

vT1 L̃v1 = 1TD1/2(D−1/2LD−1/2)D1/21 = 1TL1 =
∑
i∼j

(1i − 1j)
2 = 0.

Therefore, to find the 2nd smallest eigenvector of L̃ we do the following: Choose a random Gaussian vector
x. Then, let

y = x− ⟨x, v1/∥v1∥⟩v/∥v1∥,

where v1 = D1/21. Then calculate (2I − L̃)ky as an approximation of the 2nd smallest eigenvalue of L̃.

To prove the above theorem, we use the following 3 claims:

Claim 15.13. For any Gaussian random vector x ∈ Rn and any unit-norm vector v ∈ Rn, we have

P
[
|⟨x, v⟩| ≥ 1

2

]
≥ Ω(1)

Proof. Recall that by rotational invariance property of Gaussians, ⟨x, v⟩ is distributed as a N (0, 1) random
variable. It can be seen from the density function of the standard normal random variable that if g ∼ N (0, 1),
then

P [|g| ≥ 1/2] ≥ Ω(1)

as desired. In fact a normal is distributed almost uniformly in the interval [−1, 1]. Therefore, the probability
that it is not in the [−0.5,−0.5] is at least a constant say 1/3.
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Claim 15.14. For any Gaussian random vector x ∈ Rn, we have

P
[
∥x∥2 ≤ 2n

]
≥ 1− e

−n
8 .

Proof. The proof follows from strong concentration bounds on sum of independent normal random variables.
Recall the following theorem:

Theorem 15.15. Let g1, . . . , gn ∼ N (0, 1) be independent normal random variables. Then,

P
[∣∣∣∣ 1n (g21 + · · ·+ g2n)− 1

∣∣∣∣ ≥ ϵ

]
≤ e−nϵ2/8.

So, we can write

P
[
|x2

1 + · · ·+ x2
n − n| ≥ ϵ

]
≤ eϵ

2/8n.

Letting ϵ = n in the above proves the claim.

Our last claim which finishes the proof of Theorem 15.9.

Claim 15.16. For all vectors x ∈ Rn, ϵ > 0 and and y = Mkx we have

yTMy

yT y
≥ λ1(1− ϵ)

1 + ∥x∥2

⟨x,v1⟩2 (1− ϵ)2k−1
.

Note that this claim holds for any vector x. Now, if x in the above claim is a Gaussian random vector, then,

by Claim 15.13 and Claim 15.14, ∥x∥2

⟨x,v1⟩2 ≤ 4n with a constant probability.

Note that we needed randomness in the statement of Theorem 15.9 to ensure that the vector x has a
significant inner product with the first eigenvector of M , with respect to its norm. So Gaussian distributions
are not doing a fundamental role in this proof. For example, we could also choose coordinates of x to be
uniformly and independently chosen from {−1,+1} and almost a similar proof would follow.

Proof. By definition of y,

yTMy = xTMkMMkx = xTM2k+1x

recalling that M is PSD and thus symmetric. Similarly, yT y = xM2kx.

Suppose λ1, . . . , λn are the eigenvalues of M and v1, . . . , vn are the corresponding eigenvectors. Then
λ2k+1
1 , . . . , λ2k+1

n are eigenvalues of M2k+1.

Let us divide the eigenvalues into two groups: λ1, . . . , λj where all of these are greater than or equal to
(1− ϵ)λ1, and λj+1, . . . , λn where all are less than (1− ϵ)λ1.

Let us first discuss the highlevel idea of the proof. For the sake of intuition assume that k ≫ lgn
ϵ . Then we

may note that λk
j+1 ≤ λk

1(1 − ϵ)k ≤ λk
1(

1
n2 ). It follows that

∑n
i=j+1 λ

2k
i ≤ nλ2k

j ≤
λ2k
1

n , meaning the total

contribution of eigenvalues after j in the spectral decomposition of M2k is very small – if k is large, then
y is essentially in the span of v1, . . . , vj , and that is all I need to prove the claim, because all of the first j
eigenvalues are at least (1− ϵ)λ1.



Lecture 14: Cheeger’s Inequality cont., Spectral Clustering 15-9

Next, we do the algebra. First, let us expand the spectral decomposition of M2k+1:

xTM2k+1x = xT

(
n∑

i=1

λ2k+1
i viv

T
i

)
x

=

n∑
i=1

λ2k+1
i ⟨vi, x⟩2

≥
j∑

i=1

λ2k+1
i ⟨vi, x⟩2

≥
j∑

i=1

(1− ϵ)λ1λ
2k
i ⟨vi, x⟩2

where in the last inequality we use the fact that λ1, . . . , λj ≥ (1 − ϵ)λ1. So this gives us a lower bound for
xTM2k+1x.

Next, we derive an upper bound for xTM2kx. Putting these together we will lower bound the ratio xTM2k+1x
xTM2kx

.
Proceeding similarly to the above, we note

xTM2kx =

n∑
i=1

λ2k
i ⟨vi, x⟩2

=

j∑
i=1

λ2k
i ⟨vi, x⟩2 +

n∑
i=j+1

λ2k
i ⟨vi, x⟩2

≤
j∑

i=1

λ2k
i ⟨vi, x⟩2 + (1− ϵ)2kλ2k

1

n∑
i=j+1

⟨vi, x⟩2

≤
j∑

i=1

λ2k
i ⟨vi, x⟩2 + (1− ϵ)2kλ2k

1 ∥x∥2

where in the last inequality we used that λj+1, . . . , λn ≤ (1− ϵ)λ1 and that
∑n

i=j+1⟨vi, x⟩2 ≤ ∥x∥2, since we
are projecting x onto a set of at most n orthonormal vectors.

Now, substituting these bounds, we get

yTMky

yT y
=

xTM2k+1x

xTM2kx
≥

(1− ϵ)λ1

∑j
i=1 λ

2k
i ⟨vi, x⟩2∑j

i=1 λ
2k
i ⟨vi, x⟩2 + (1− ϵ)2kλ2k

1 ∥x∥2

=
(1− ϵ)λ1

1 +
(1−ϵ)2kλ2k

1 ∥x∥2∑j
i=1 λ2k

i ⟨vi,x⟩2

≥ (1− ϵ)λ1

1 +
(1−ϵ)2kλ2k

1 ∥x∥2

λ2k
1 ⟨v1,x⟩2

≥ (1− ϵ)λ1

1 + (1− ϵ)2k ∥x∥2

⟨x,v1⟩2
.

as desired
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