Problem Set 1

Deadline: Oct 16 (at 11:59 PM) in gradescope

Instructions

- You should think about each problem by yourself for at least an hour before choosing to collaborate with others.
- You are allowed to collaborate with fellow students taking the class in solving the problems. But you must write your solution on your own.
- You are not allowed to search for answers or hints on the web. You are encouraged to contact the instructor or the TAs for a possible hint.
- You cannot collaborate on Extra credit problems
- Solutions typeset in LATEX are preferred.
- Feel free to use the Discussion Board or email the instructor or the TAs if you have any questions or would like any clarifications about the problems.
- Please upload your solutions to Gradescope.

In solving these assignments and any future assignment, feel free to use these approximations:

$$
1-x \approx e^{-x}, \quad \sqrt{1-x} \approx 1-x / 2, \quad n!\approx(n / e)^{n}, \quad\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

1) For a prime p we can generate a pairwise independent hash function by choosing a, b independently from the interval $\{0, \ldots, p-1\}$ and using $a x+b$ as a random number (see lecture 4). Suppose we generate t pseudo random numbers this way, r_{1}, \ldots, r_{t} where $r_{i}=a i+b(\bmod p)$. We want to say this set is far from being mutually independent. Consider the set $S=\{p / 2, \ldots, p-1\}$ which has half of all elements. Prove that with probability at least $\Omega(1 / t)$ none of the pseudo-random-numbers are in S. Note that if we had mutual independence this probability would have been $1 / 2^{t}$.
2) Let n be an even integer (you can assume n is large enough). Let G_{k} be the (multi)-graph on n vertices formed by taking the union of k perfect matchings which are chosen uniformly at random from the set of all perfect matchings among n vertices (A sanity check: how would you efficiently sample a uniformly random perfect matching?).
a) Prove that if $k \geq 3$, then G_{k} is connected with high probability? Any probability of the form $1-1 / n$ or $1-1 / \log n$ that that approach 1 as n tends to infinity suffices.)
A side note: In fact one can show that for $k \geq 3, G$ is a very well connected in the sense that it becomes an expander. We will learn more about expanders in future lectures.
b) Show that if $k=2$ then the probability that G is connected goes to 0 as $n \rightarrow \infty$.
