Problem Set 3

Deadline: Oct 24th (at 11:59PM) in gradescope

The goal of this problem set is to learn the idea of minhash. Minhash is a hash function which is commonly used in practice to estimate the Jaccard similarity of two sets.

1) Suppose we have a universe U of elements. For $A, B \subseteq U$, the Jaccard distance of A, B is defined as

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

This definition is used practice to calculate a notion of similarity of documents, webpages, etc. For example, suppose U is the set of English words, and any set A represents a document considered as a bag of words. Note that for any two $A, B \subseteq U, 0 \leq J(A, B) \leq 1$. If $J(A, B)$ is close to 1 , then we can say $A \approx B$.
Let $h: U \rightarrow[0,1]$ where for each $i \in U, h(i)$ is chosen uniformly and independently at random. For a set $S \subseteq U$, let $h_{S}:=\min _{i \in S} h(i)$. Show that

$$
\mathbb{P}\left[h_{A}=h_{B}\right]=J(A, B)
$$

2) Optional 0 points: Let X_{1}, \ldots, X_{n} be independent random variables uniformly distributed in $[0,1]$ and let $Y=\min \left\{X_{1}, \ldots, X_{n}\right\}$. Show that $\mathbb{E}[Y]=\frac{1}{n+1}$ and $\operatorname{Var}(Y) \leq \frac{1}{(n+1)^{2}}$.
3) Consider the following algorithm for estimating F_{0}, the number of unique elements in a sequence x_{1}, \ldots, x_{m} in the set $\{0,1, \ldots, n-1\}$. Let $h:\{0,1, \ldots, n-1\} \rightarrow[0,1]$ s.t., $h(i)$ is chosen uniformly and independently at random in $[0,1]$ for each i. We start with $Y=1$. After reading each element x_{i} in the sequence we let $Y=\min \left\{Y, h\left(x_{i}\right)\right\}$.
a) Show that by the end of the stream $\frac{1}{\mathbb{E}[Y]}-1$ is equal to F_{0}.
b) Use the above idea to design a streaming algorithm to estimate the number of distinct elements in the sequence with multiplicative error $1 \pm \epsilon$. For the analysis you can assume that you have access to k independent hash functions as described above. Show that $k \leq O\left(1 / \epsilon^{2}\right)$ many such hash functions is enough to estimate the number of distinct elements within $1+\epsilon$ factor with probability at least $9 / 10$.
