Problem Set 4

Deadline: Oct 30th in Canvas

1) A probability distribution D_{p} over \mathbb{R} is said to be p-stable if for Z, Z_{1}, \ldots, Z_{n} independently drawn from D_{p} and for any fixed $x \in \mathbb{R}^{n}$, the random variable $\sum_{i=1}^{n} x_{i} Z_{i}$ is equal in distribution to $\|x\|_{p} \cdot Z$. Some examples are the standard normal distribution $N(0,1)$, which is 2 -stable. Another less-known example is the Cauchy distribution, which is 1-stable; it has probability density function $\Phi(x)=1 /\left(\pi(1+x)^{2}\right)$. It is a known theorem that such distributions exist iff $p \in(0,2]$. Note that p-stable random variables for $p \neq 2$ cannot have bounded variance, since otherwise the sum of independent copies would have to be gaussian by central limit theorem. In fact, it is known that any p-stable have bounded and continuous density function and they must have tail bounds $P(|Z|>\lambda)=O\left(1 /(1+\lambda)^{p}\right)$ for all $\lambda>0$. This implies that such distributions cannot exist for $p>2$ (since otherwise they would have bounded variance, violating the central limit theorem).
a) Suppose Z is p-stable; show that for any $\alpha>0, \alpha Z$ is also p-stable.
b) Let Z be a p-stable random variable normalized (by a constant) so that $\mathbb{P}[Z \in[-1,1]]=1 / 2$ (see previous part). Fix some $\epsilon>0$. Show that there is a constant $c>0$ (as a function of ϵ, p such that

$$
\begin{aligned}
& \mathbb{P}[-1+\epsilon<Z<1-\epsilon] \leq 1 / 2-c \epsilon \\
& \mathbb{P}[-1-\epsilon<Z<1+\epsilon] \geq 1 / 2+c \epsilon
\end{aligned}
$$

c) Let $P \in \mathbb{R}^{m \times d}$ where $P_{i, j}$ is an independent sample of Z. Let $x \in \mathbb{R}^{d}$ arbitrary and $y=P x$; show that for $m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$, with probability at least $1-\delta$, the median of $\left|y_{1}\right|, \ldots,\left|y_{m}\right|$ is a $1 \pm \epsilon$ multiplicative approximation of $\|x\|_{p}$.
d) Implement the algorithm in the previous part and use it to estimate the $\|x\|_{1}$ of the vector x given in the p4.in file in the website (will upload soon). Insert your code together with the value of m and ϵ that you use, $\|x\|_{1}$ and the output of your code.
Note: Although we are not going to discuss it here, this idea can be used together with a family of k-wise independent hash functions to design streaming algorithm with poly-log memory to estimate the p-norm for $p<2$.
2) In this problem we design an LSH for points in \mathbb{R}^{d}, with the ℓ_{1} distance, i.e.

$$
d(p, q)=\sum_{i}\left|p_{i}-q_{i}\right|
$$

a) Let a, b be arbitrary real numbers. Fix $w>0$ and let $s \in[0, w)$ chosen uniformly at random. Show that

$$
\mathbb{P}\left[\left\lfloor\frac{a-s}{w}\right\rfloor=\left\lfloor\frac{b-s}{w}\right\rfloor\right]=\max \left\{0,1-\frac{|a-b|}{w}\right\}
$$

Recall that for any real number $c,\lfloor c\rfloor$ is the largest integer which is at most c.
Hint: Start with the case where $a=0$.
b) Define a class of hash functions as follows: Fix w larger than diameter of the space. Each hash function is defined via a choice of d independently selected random real numbers $s_{1}, s_{2}, \ldots, s_{d}$, each uniform in $[0, w)$. The hash function associated with this random set of choices is

$$
h\left(x_{1}, \ldots, x_{d}\right)=\left(\left\lfloor\frac{x_{1}-s_{1}}{w}\right\rfloor,\left\lfloor\frac{x_{2}-s_{2}}{w}\right\rfloor, \ldots,\left\lfloor\frac{x_{d}-s_{d}}{w}\right\rfloor\right)
$$

Let $\alpha_{i}=\left|p_{i}-q_{i}\right|$. What is the probability that $h(p)=h(q)$ in terms of the α_{i} values? For what values of p_{1} and p_{2} is this family of functions $\left(r, c \cdot r, p_{1}, p_{2}\right)$-sensitive? Do your calculations assuming that $1-x$ is well approximated by e^{-x}.

