Problem Set 5

Deadline: Oct 7th in gradescope

1) a) Let $M \in \mathbb{R}^{n \times n}$ be a (symmetric) PSD matrix. Show that for any $P \in \mathbb{R}^{m \times n}, P M P^{T} \succeq 0$.
b) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix that has k positive eigenvalues for some integer $k \geq 1$. Use Cauchy's interlacing theorem (below) to show that for any $P \in \mathbb{R}^{m \times n}, P M P^{T}$ has at most k positive eigenvalue.
Theorem 5.1 (Cauchy's Interlacing Theorem). Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_{n} \leq \cdots \leq \lambda_{1}$. For a vector $v \in \mathbb{R}^{n}$, let $\beta_{n} \leq \cdots \leq \beta_{1}$ be the eigenvalues of $M+v v^{T}$. Then,

$$
\lambda_{n} \leq \beta_{n} \leq \lambda_{n-1} \leq \beta_{n-1} \leq \cdots \leq \lambda_{1} \leq \beta_{1}
$$

2) In this problem you can use the following theorem.

Theorem 5.2 (Hanson-Wright inequality). . For $\sigma_{1}, \ldots, \sigma_{n}$ independent $\{+1,-1\}$ Radamacher random variable, i.e., $\sigma_{i}=+1$ w.p. $1 / 2$ and $\sigma=-1$ otherwise. and $A \in \mathbb{R}^{n \times n}$, for all $p \geq 1$

$$
\mathbb{P}\left[\left|\sigma^{T} A \sigma-\mathbb{E} \sigma^{T} A \sigma\right|>t\right] \leq 2 \exp \left(-c \min \left\{\frac{t^{2}}{\|A\|_{F}^{2}}, \frac{t}{\|A\|}\right\}\right)
$$

where $c>0$ is a universal constant (independent of n).
a) Show that for any matrix $A \in \mathbb{R}^{m \times n}$,

$$
\left\|A^{T} A\right\|_{F}^{2} \leq\|A\|^{2}\|A\|_{F}^{2}
$$

b) Show that for a random vector $\sigma \in \mathbb{R}^{n}$, where σ_{i} 's are independent Radamacher random variables, and for any $A \in \mathbb{R}^{m \times n}$ and $0<\epsilon<1$, we have,

$$
\mathbb{P}\left[\left|\frac{\|A X\|^{2}}{\|A\|_{F}^{2}}-1\right|>\epsilon\right] \leq 2 \exp \left(-c \frac{\epsilon^{2}\|A\|_{F}^{2}}{\|A\|^{2}}\right)
$$

c) For an application, let E be a d-dimensional subspace of \mathbb{R}^{n}, and let Π_{E} be the the projection operator onto E (see lecture 11). Show that for a random Radamacher vector (as above), and $0<\epsilon<1$ we have,

$$
\mathbb{P}\left[\left|\frac{d(\sigma, E)^{2}}{n-d}-1\right|>\epsilon\right] \leq 2 \exp \left(-c \epsilon^{2}(n-d)\right)
$$

Here, $d(\sigma, E)$ is the Euclidean distance of σ from E.

