
Lecture 3

Polar Duality and Farkas’ Lemma

October 8th, 2004
Lecturer: Kamal Jain
Notes: Daniel Lowd

3.1 Polytope =⇒ bounded polyhedron

Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem: every polytope is a bounded
polyhedron, and every bounded polyhedron is a polytope. The second direction (every bounded polyhedron
is a polytope) was shown last lecture, using an argument about corner points. This lecture, we show that
every polytope is a bounded polyhedron by investigating the concept ofpolar duality.

Theorem 3.1. CONVEXHULL(w1, . . . , wk) = P = Polytope =⇒ P is a bounded polyhedron

Assume thatP is full-dimensional, and, WLOG,0 is in the interior ofP . (This latter requirement can
simply be seen as a normalization, since it is easily accomplished by translation.)

From this, we can deduce that there must be some ball that fits insideP :

∃r > 0 s.t.B(0, r) ⊂ P

We now define thepolar dualof a polytopeP , denotedP∗:

Definition 3.1. Thepolar dualof a setP , denotedP ∗, is the set{y|yT x ≤ 1,∀x ∈ P}.

WhenP is a polytope, as in this case, the following defintion is equivalent:

P ∗ = {y|yT wi ≤ 1, i = 1 . . . k}

It is easy to see that these two definitions are equivalent, because∀x ∈ P , x = λ1w1 + . . .+λkwk, λi ≥
0. Therefore,yT x =

∑k
i=1 λiy

T · wi ≤
∑k

i=1 λi = 1.

Lemma 3.2. P ∗ is a bounded polyhedron.

Proof. r y
‖y‖ ∈ B(0, r) ⊂ P . So ry

‖y‖ ∈ P . Thus,yT
(

ry
‖y‖

)
≤ 1. Simplifying, ‖y‖

2

‖y‖ r ≤ 1, so‖y‖ ≤ 1
r .

Since the length ofy is bounded,P ∗ is a bounded polyhedron.
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We still need to show that(P ∗)∗ is a bounded polyhedron andP ∗∗ = P . Once we’ve proven that, we’ve
proven that any polytopeP is a bounded polyhedron, so we’re done.

The following argument is tempting, but wrong. Note that:

∀x ∈ P,∀y ∈ P ∗x · y ≤ 1

Flipping this around, we see:
∀y ∈ P ∗,∀x ∈ Px · y ≤ 1

This looks a lot like the requirement for membership inP ∗∗! Unfortunately, this intuition is wrong if
P isn’t convex. It is possible to findS = {w1, w2, . . . , wk} such thatS∗ = P ∗, soS∗∗ = P ∗∗ = P 6= S!
(WhenS is non-convex.)

Here’s an alternate approach that does work: we show thatP ⊂ P ∗∗ andP ∗∗ ⊂ P .

Proof. The first direction is easy: considerx ∈ P . For anyy ∈ P ∗, x · y ≤ 1. Therefore,x ∈ P ∗∗ as well,
since the only requirement is thaty · x ≤ 1, which was already ensured.

For the second direction, we wish to show that forx 6∈ P , x 6∈ P ∗∗. Let C, δ define a hyperplane
separating the polytope fromx: CT · z < δ∀z ∈ P , andCT · x > δ. Since0 ∈ P , CT · 0 < δ, implying
thatδ > 0. WLOG, letδ = 1.

We have:CT · z < 1∀z ∈ P . So by the definition ofP ∗, C ∈ P ∗. SinceCT x > 1 andC ∈ P ∗,
x 6∈ P ∗∗.

3.2 Homework

3.2.1 Homework #1

Construct polynomial time algorithms for the following:

1. A simple polygon is one that has no self-intersections (two edges that cross) or self-touching (an edge
that passes through a vertex, or two vertices with the same coordinate). Given an ordered list of points,
p1, p2, . . . , pn, determine if the polygon they define, POLYGON(p1, p2, . . . , pn, p1) is simple.

2. Given a simple polygon POLYGON(p1, p2, . . . , pn, p1), determine if a pointz is in the polygon or not.

3. Find a triangulation of a simple polygon, POLYGON(p1, p2, . . . , pn, p1). A triangulation is a set of
triangles,T1, T2, . . . , Tk such that:

(a) T1 ∪ T2 ∪ . . . ∪ Tk = POLYGON(p1, p2, . . . , pn, p1)

(b) interior(Ti) ∩ interior(Tj) = ∅,∀i 6= j

(c) ∀ivertices(Ti) ⊂ p1, p2, . . . , pn
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3.2.2 Homework #2

Define a function POLARDUALITY : P → P ∗. Determine whether this function is a bijection for the
following domains:

1. Set of all closed convex sets containing 0.

2. Set of all closed convex sets containing 0 in the interior.

3. Set of all polyhedra containing 0.

4. Set of all polyhedra containing 0 in the interior.

5. Set of all polytopes containing 0.

6. Set of all polytopes containing 0 in the interior.

3.3 Alternate Proof of Farkas’ Lemma

3.3.1 Homogeneous case

Theorem 3.3. aT
1 x ≥ 0, aT

2 x ≥ 0, . . . , aT
m ≥ 0 =⇒ CT x ≥ 0 iff C = λ1a1 + λ2a2 + · · · + λmam∀i :

λi ≥ 0.

We first present a few useful definitions.

Definition 3.2. A coneis a convex set such that,∀x ∈ Cone, λx ∈ Cone∀λ ≥ 0. Alternately, aconeis an
intersection of half-spaces defined by hyperplanes passing through the origin.

Definition 3.3. A polyhedral coneis a cone defined by a finite number of hyperplanes.

A cone may be finitely generated by pointsx1, x2, . . . , xk as follows:

CONE(x1, x2, . . . xk) = y|y =
k∑

i=1

λixi,∀i : λi ≥ 0

Proof of Farkas’ Lemma.The first direction is easy:

If C = λia1 + λ2a2 + · · ·+ λmam∀i : λi ≥ 0, thenCT x =
∑

i λia
T
i x ≥ 0.

For the other direction, we show that ifC 6= λ1a1 + · · · + λmam, thenCT x < 0. Equivalently, if
C 6∈ CONE(a1, a2, . . . , am) thenCT x < 0.

Let dδ be a vector such that:

1. dT z > δ∀z ∈ CONE(a1, a2, . . . , am)

2. dT C < δ
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Since0 ∈ CONE(a1, a2, . . . , am), dT 0 > δ. WLOG, letδ = −1.

Now we have thatdT z > −1 anddT C < −1.

We know, therefore, thatdT a1 > −1. Therefore,1ε a1 ∈ CONE(a1, a2, . . . , am), sodT (1
ε a1) > −1.

Multiplying both sides byε, we have:dT a1 > ε.

In the limit, dT a1 ≥ 0, since this inequality is true forall epsilon. Therefore, we have adT such that
dT a1 ≥ 0, dT a2 ≥ 0, . . . , dT am ≥ 0 butCT d < 0.

3.3.2 Non-homogeneous case

Theorem 3.4. aT
1 x ≥ b1, a

T
2 x ≥ b2, . . . , a

T
m ≥ bm =⇒ CT x ≥ d iff C =

∑m
i=1 λiai, λi ≥ 0 and

d ≤
∑m

i=1 λibi

Remark.As the notetaker, I could not follow this argument. My notes reflect this, and my write-up re-
flects my notes. Therefore, I recommend looking at Schrijver’s notes on combinatorial optimization, which
contain an alternate proof of this theorem.

Proof. As a helpful step, we show that for anyz ≥ 0, aT
1 x− b1z ≥ 0, . . . aT

mx− bmz ≥ 0 =⇒ CT x ≥ dz.
If we can show this, then we simply apply the homogeneous version and we’re done.

Case 1:z > 0

Case 2:z = 0, soaT
1 x ≥ 0 . . . aT

mx ≥ 0
x1 + λx, λ ≥ 0

CT (x1 + λx) ≥ d, soCT x ≥ 0.

Consider them + 1 dimension vector(C,−d) = λ1(a1,−b1) + λ2(a2,−b2) + · · ·+ λm(am,−bm) +
λm+1(0, 1)

C = λ1a1 + λ2a2 + · · ·+ λmam

−d = −b1λ1 − b2λ2 + · · ·+−bmλm + λm+1

−d ≥ −(b1λ1 + b2λ2 + · · ·+ bmλm)
d ≤ b1λ1 + b2λ2 + · · ·+ bmλm

3.4 Applications of Farkas’ Lemma

Remark.As a notetaker, I didn’t understand all of this, either.

Consider a business owned byN = {1, 2, . . . , n} partners. The profit they make isP (N). Any subset
of themS ⊂ N working together could make a profit ofP (S). Therefore, in dividing up the profits, each
subsetS must receive at leastP (S) or they would have incentive to go off and start their own business.

In other words, a solution to this profit-dividing problem (if one exists) must meet the following criteria:
P (N) = P1 + P2 + · · · + Pn such that∀S,

∑
i∈S Pi ≥ P (S). Pi in this case is the amount of profit that

goes to theith partner.
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Definition 3.4. Thecoreof this game is a set of all solutions such thatP (S) ≥ 0 andP (T ) ≥ P (S) for
anyT ⊃ S.

Definition 3.5. In abalanced game, there exists a fractional decompositionN = λ1S1+λ2S2+ · · ·+λkSk,
where∀j

∑
i:j∈Si

λi = 1 andP (N) ≥
∑k

i=1 λiP (Si).

Theorem 3.5 (Bondareva-Shapley).The core is non-empty if and only if the game isbalanced.

Proof. First, we show that a core implies a balanced game.P (N) = P1 + P2 + · · ·+ Pn.

k∑
i=1

λiP (Si) ≤
k∑

i=1

λi

∑
j∈Si

Pj

. We can reorder the sums to obtain:∑
j

Pj

∑
i:j∈Si

λi =
∑

j

Pj = P (N)

In the reverse direction, we show that an empty core implies an imbalanced game.

−(P1 + P2 + · · ·+ Pn) ≥ −P (N) → λ

∀S
∑
i∈S

Pi ≥ P (S) → λS

∀i− λ +
∑

S:i∈S

λS = 0 ; λ, λS ≥ 0

−λP (N) +
∑

λiP (S) > 0 ; λ > 0

Then just apply Farkas’ lemma.
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