Lecture 3
Polar Duality and Farkas’ Lemma

October 8th, 2004
Lecturer: Kamal Jain
Notes: Daniel Lowd

3.1 Polytope = bounded polyhedron

Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem: every polytope is a bounded
polyhedron, and every bounded polyhedron is a polytope. The second direction (every bounded polyhedron
is a polytope) was shown last lecture, using an argument about corner points. This lecture, we show that
every polytope is a bounded polyhedron by investigating the concegatiaf duality.

Theorem 3.1. CONVEXHULL (wy, ..., w;) = P = Polytope = P is a bounded polyhedron

Assume thatP is full-dimensional, and, WLOQ) is in the interior of P. (This latter requirement can
simply be seen as a normalization, since it is easily accomplished by translation.)

From this, we can deduce that there must be some ball that fits iffside

dr > 0s.t.B(0,r) C P

We now define th@olar dualof a polytopeP, denotedPx:

Definition 3.1. Thepolar dualof a setP, denotedP*, is the sef{y|y’z < 1,Vz € P}.

WhenP is a polytope, as in this case, the following defintion is equivalent:

P ={ylyTw; <1l,i=1...k}

It is easy to see that these two definitions are equivalent, bevauseP, x = Ajwi +. ..+ A\pwg, A; >
0. Thereforey™z = 2% Ay -w; <S8 N =1

Lemma 3.2. P* is a bounded polyhedron.

Proof. r#r € B(0,r) C P. Soph € P. Thus,y” (ﬁ) < 1. Simplifying, %r < 1,soljyl| < i

Since the length of is bounded P* is a bounded polyhedron.

O



We still need to show thdtP*)* is a bounded polyhedron addf* = P. Once we've proven that, we've
proven that any polytop® is a bounded polyhedron, so we're done.

The following argument is tempting, but wrong. Note that:

Ve e PYy e P'x-y<1

Flipping this around, we see:
Vy e P*Vx € Pr-y<1

This looks a lot like the requirement for membershipAi! Unfortunately, this intuition is wrong if
P isn’t convex. Itis possible to find = {w;,ws,...,w;} such thatS* = P*, soS** = P** = P # S|
(When.S' is non-convex.)

Here’s an alternate approach that does work: we showRhatP** and P** C P.

Proof. The first direction is easy: considerc P. For anyy € P*, z -y < 1. Thereforex € P** as well,
since the only requirement is that = < 1, which was already ensured.

For the second direction, we wish to show that fo¢Z P, = ¢ P**. Let C, § define a hyperplane
separating the polytope from C7 - 2 < ¥z € P, andC” -z > §. Since0 € P, CT -0 < 6, implying
thatd > 0. WLOG, let§ = 1.

We have:C” - z < 1Vz € P. So by the definition of”*, C € P*. SinceCTz > 1 andC € P*,
w g P 0

3.2 Homework

3.2.1 Homework #1

Construct polynomial time algorithms for the following:

1. Asimple polygon is one that has no self-intersections (two edges that cross) or self-touching (an edge
that passes through a vertex, or two vertices with the same coordinate). Given an ordered list of points,
P1,D2,- - -, Pn, determine if the polygon they definepByGON(p1, p2, . . ., pn, p1) iS Simple.

2. Given a simple polygon®.YGON(p1, p2, . - ., Pn, P1), determine if a point is in the polygon or not.

3. Find a triangulation of a simple polygonpBYGON(p1,p2,...,pn,p1). A triangulation is a set of
triangles 1y, 75, ..., T such that:

(@ ThUTrU...UT = POLYGON(p1,p2, - -, Pn,P1)
(b) interior(T;) Ninterior(T;) = 0,Vi # j
(c) Vivertices(T;) C p1,p2,---,Dn



3.2.2 Homework #2

Define a function BLARDUALITY: P — P*. Determine whether this function is a bijection for the
following domains:

Set of all closed convex sets containing 0.

Set of all closed convex sets containing 0 in the interior.
Set of all polyhedra containing 0.

Set of all polyhedra containing 0 in the interior.

Set of all polytopes containing O.

o o A w0 dp o

Set of all polytopes containing 0 in the interior.

3.3 Alternate Proof of Farkas’ Lemma

3.3.1 Homogeneous case

Theorem 3.3.a{:1: > O,ng > 0,...,(1% >0 = CTe >0iff C = A\ay + deas + -+ + A\pamVi :
A > 0.

We first present a few useful definitions.

Definition 3.2. A coneis a convex set such thaty € Cone, Ax € ConeVA > 0. Alternately, aconeis an
intersection of half-spaces defined by hyperplanes passing through the origin.

Definition 3.3. A polyhedral conés a cone defined by a finite number of hyperplanes.

A cone may be finitely generated by pointg xo, . . ., zx as follows:

k
CONE(QZ’l,l’Q, . xk) = y\y = Z ANz, Vi A >0
=1
Proof of Farkas’ LemmaThe first direction is easy:
If C = \ia1 + Xoas + -+ + AmamVi : \; > 0, thenCTz = > )\Z—aZTz > 0.

For the other direction, we show thatGf # M\ja; + - - + A\pnam, thenCTz < 0. Equivalently, if
C ¢ CONE(ay, as, ..., an,)thenCTz < 0.

Let dd be a vector such that:

1. d¥z > 0¥z € CONE(ay, as, - . ., am)

2. dTCc <6



Since0 € CONE(ay, as, . .., am),d’ 0 > 6. WLOG, let§ = —1.
Now we have that’ z > —1 andd? C < —1.

We know, therefore, that”a; > —1. Therefore,la; € CoNE(ay, as, ..., an), sod’ (1ay) > —1.
Multiplying both sides by, we have:d” a; > e.

In the limit, d”a; > 0, since this inequality is true faall epsilon. Therefore, we haved such that
dla; >0,d%ay >0,...,d"a, > 0butC’d < 0. O

3.3.2 Non-homogeneous case

Theorem 3.4.aTz > by,adz > bo,...,al, > b,, = CTzx > diff C = Y, Nai, N > 0 and
d <37 Aibi

Remark. As the notetaker, | could not follow this argument. My notes reflect this, and my write-up re-

flects my notes. Therefore, | recommend looking at Schrijver's notes on combinatorial optimization, which
contain an alternate proof of this theorem.

Proof. As a helpful step, we show that for any> 0, afx —b12 > 0,...alx— b,z >0 = CTz > dz.
If we can show this, then we simply apply the homogeneous version and we're done.

Caselz >0

Case 22 =0,s0alx>0...alx >0
1+ A, A>0
CT(zy + M\x) > d, soCTz > 0.
Consider then + 1 dimension vectofC, —d) = Ai(a1, —b1) + A2(a2, —b2) + - -+ + A (@m, —bim) +
)\m—‘rl(O? 1)
C=Xai +Xas+--+ \nam
—d = —biA1 —b2A2 + -+ =bpAm + Amta

—d > —(bl)\l 4+ boAg + -+ bm/\m)
d < by +baAo + -+ by A

3.4 Applications of Farkas’ Lemma

Remark.As a notetaker, | didn't understand all of this, either.

Consider a business owned by = {1,2,...,n} partners. The profit they make I3(N). Any subset
of themS C N working together could make a profit #f(S). Therefore, in dividing up the profits, each
subsetS must receive at leagt(S) or they would have incentive to go off and start their own business.

In other words, a solution to this profit-dividing problem (if one exists) must meet the following criteria:
P(N) = P+ P+ --- + P, such thaw'S, Y .o P; > P(S). P; in this case is the amount of profit that
goes to theth partner.



Definition 3.4. The core of this game is a set of all solutions such t#tS) > 0 and P(T") > P(S) for
anyT D S.

Definition 3.5. In abalanced gamehere exists a fractional decompositiyh= \{S1 + A2 So+- - - + A Sk,
whereV; 37, .o Ai = LandP(N) > Y0 AiP(S)).

Theorem 3.5 (Bondareva-Shapley)The core is non-empty if and only if the gaméadanced

Proof. First, we show that a core implies a balanced gaf(EV) = P, + Po + - - - + P,.

. We can reorder the sums to obtain:

> P> A=) Pi=P(N)
i

:jES; 7
In the reverse direction, we show that an empty core implies an imbalanced game.
—(PL+Py+-+ P,)>—P(N) — A

VS> P> P(S) - g
€S
Vi—A+ > As=0;XX5>0
SueS

—AP(N)+ Y AP(S)>0;A>0

Then just apply Farkas’ lemma. O



