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4.1 Weak duality

Given a linear program, write all the equalities with a greater than or equal sign. The constraints can be
strict, and you can have two types of variables to distinguish. The last equation is not really a constraint.

Min
n∑

i=1

cixi

∀j = 1 . . . k1

∑
i

aijxi ≥ bj

∀j = k1 + 1 . . .m
∑

i

aijxi = bj

∀i = 1 . . . k2 xi ≥ 0
∀i = k2 + 1 . . . n xi <> 0|0

For the dual, first create dual variables for each constraint, as though multiplying by some coefficient.
Don’t create dual variables for the positive constraints. Min becomes max, constraints become variables,
variables become constraints, nonnegatives become inequalities, and unconstrained variables become equal-
ities:

Max
m∑

j=1

bjyj

∀j = 1 . . . k1 yj ≥ 0
∀j = k1 + 1 . . .m yj <> 0

∀i = 1 . . . k2

∑
j

aijyj ≤ ci

∀i = k2 + 1 . . . n
∑

j

aijyj = ci

Theorem 4.1. Weak DualityTake any feasible primal solutionX and take any feasible dual solutionY .
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Then the objective function of the primal is greater than or equal to the objective function of the dual:

n∑
i=1

cixi ≥
m∑

j=1

bjyj

Proof. Proof uses constraints of primal and dual.

n∑
i=1

cixi =
k2∑
i=1

cixi +
n∑

i=k2+1

cixi

=
k2∑
i=1

cixi +
n∑

i=k2+1

 m∑
j=1

aijyj

 xi

[thexi’s are nonnegative, so if theci’s decrease, the sum will decrease]

≥
k2∑
i=1

 m∑
j=1

aijyj

 xi +
n∑

i=k2+1

 m∑
j=1

aijyj

 xi

=
n∑

i=1

m∑
j=1

aijyjxi

=
m∑

j=1

n∑
i=1

aijxiyj

≥
m∑

j=1

bjyj

4.2 Strong Duality

Theorem 4.2. Strong DualityOptimum objective functions are equal.

Proof. We will prove: if the objective function is optimum, then the dual is greater than or equal to the
primal. With weak duality, this gives us equality.

Write the primal constraints as

∀j = 1 . . . k1

∑
i

aijxi ≥ bj (4.1)

∀j = k1 + 1 . . .m
∑

i

aijxi ≥ bj (4.2)

∀j = k1 + 1 . . .m
∑

i

(−aij)xi ≥ −bj (4.3)

∀i = 1 . . . k2 xi ≥ 0 (4.4)
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Equations (2) and (3) are equivalent to the original strict equality constraint. Call the variable associated
with (1) yj ≥ 0; with (2), zj ≥ 0; with (3), wj ≥ 0; and with (4),vi ≥ 0. Assume that min

∑n
i=1 cixi = d

is optimum. Then the primal constraints must imply
∑n

i=1 cixi ≥ d.

By Farka’s lemma, there must be a proof of this fact. On the left hand side, we should get something by
summing that is≥ d. This will prove our theorem.

ci =
k1∑

j=1

aijyj +
m∑

j=k1+1

aijzj +
m∑

j=k1+1

(−aij)wj + vi(i = 1 . . . k2)

Right hand side:
k1∑

j=1

bjyj +
m∑

j=k1+1

bjzj +
m∑

j=k1+1

(−bj)wj ≥ d

We can ignore thevi’s by making it≥, and tighten up the equation:

k1∑
j=1

bjyj +
m∑

j=k1+1

bj(zj − wj) ≥ d

So there exists a solution that is feasible for the dual and is greater than or equal to the primal. How-
ever, this proof assumes the existence of feasible solutions; without them, the solution is unbounded. The
equations can’t both be infeasible. If one is infeasible, Farka’s gives you a feasible solution in the dual.

4.3 Complementary Slackness

Definition 4.1. Primal Complementary Slackness

∀i = 1 . . . k2cixi =
m∑

j=1

aijyjxi

Eitherxi = 0 or xi > 0 andci =
∑m

j=1 aijyj .

Definition 4.2. Dual Complementary Slackness

∀i = j . . . k1bjyj =
n∑

i=1

aijxiyj

Eitheryj = 0 or yj > 0 andbj =
∑n

i=1 aijxi.

If the objective functions are equal then the complementary slackness conditions hold; if both comple-
mentary slackness conditions hold, then the objective functions are equal.
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4.3.1 Integer Program

Min
n∑

i=1

cixi

∀j = 1 . . .m
n∑

i=1

aijxi ≥ bj

xi ∈ {0, 1}
All ci, bj , aij ≥ 0

Relaxation:xi ≥ 0
Dual:

Max
m∑

j=1

bjyj

∀i = 1 . . . n

m∑
j=1

aijyj ≤ ci

yj ≥ 0

We are not interested in the typical optimum solution. Instead, we try to get an integral solution for the
primal and some nice solution for the dual that we can prove is close to optimum.

Any arbitrary integral solution≥ OPTI ≥ OPTLP =OPTDual ≥ ValueFeasibledual

Take any feasible integral solution. It is greater than or equal to any feasible dual. The feasible integral
solution that we find with the LP is less than or equal to some factor times the feasible dual that the algorithm
finds.

Eitherxi = 0 or xi > 0 and
∑n

j=1 aijyj ≥ ci. This is sufficient for complementary slackness. This may
not happen, so ideally at least

α

 n∑
j=1

aijyj

 ≥ ci for someα ≥ 1

This is calledα-approximate primal complementary slackness. Similarly,β-approximate dual complemen-
tary slackness conditions are: eitheryj = 0 or yj > 0 and

∑n
i=1 aijxi ≤ βbj . Primal feasibility already

implies
∑

aijxi ≥ bj , soβ ≥ 1.

α-β factor algorithm: primal complementary slackness satisfied byα, dual complementary slackness
satisfied byβ.

Intuitively, xi’s are resources.yj ’s are money you pay. If some resource is bought then you almost pay
correctly in dual solution. Constraints are people and they are independent. Everyone wants to satisfy his
or her constraint.yj is the amount of money that thejth person is willing to spend, but he doesn’t want
to overpay. If the price of the resource isci, no one wants to overpay for that resource. Complementary
slackness is saying no resource is underpaid, either.
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4.3.2 Vertex cover example

Given an undirected graph G, each nodev has weight functionwv ≥ 0. The objective is to pick vertices
v1, . . . vk such that the total weight is as small as possible and all edges are covered by at least one vertex:
∀e = vi, vj , eithervi is picked orvj is picked, or both. We claim there is an algorithm with factor 2.

LP: Letxv be 1 if it’s picked and 0 otherwise.

Min
∑

v

wvxv

∀e = u, v xu + xv ≥ 1
xv ∈ {0, 1} relax toxv ≥ 0

Dual:

Max
∑

e∈δ(u)

ye

δ(u) = {e = {u, v}}
∀u

∑
e∈δ(u)

ye ≤ wu

∀v
∑

e∈δ(u)

ye ≤ wv

Take any maximal dual: if you try to increase anyye, you’ll get an infeasible solution. Take any maximal
ye and pick corresponding vertex. This is feasible, because if you look at any edge, it must have been picked
on at least one side.ye is in two inequalities, and once has no slack (since solution is maximal), so one is
picked. The factor 2 comes becauseβ = 2. There is no slack in the primal, thebjs are 1. But you may have
picked two vertices.

Intuitively: every edge is offeringye money to get chosen. A vertex that gets enough money will sell; it
may sell to twoye’s and that’s the factor of 2.
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