Lecture 7

Prize Collecting Steiner Forest Problem

Oct 23, 2004
Lecturer: Kamal Jain
Notes: Neva Cherniavsky

7.1 Problem description

G=(V,E),C : E — R" cost function.

T:VxV —=RFT

(i, j) = m(j,1)

m(i,i) =0

HCG

If you don’t have a path betweérand, then you pay a penalty af(i, j). >, Ce + Zi’j m;,; Wherei, j
are in different components.

Last time:

minE Coe + E Az

ecH 4,J

We hadz, € {0, 1}, which we relaxed ta. > 0, andz;; € {0, 1}, which we relaxed ta;; > 0.

Definition 7.1. S ® ij meansS is a set that separatéand;. Thatis,i € S,j ¢ S,ori ¢ S,j € S.

The equatiory;; + Zeeé(s) z. > 1 means either we pay the penalty or a path exists. The dual
variable corresponds s ;; whereS separatesand;.

7.2 Dual
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Note that there are lots of duals. For dial;;, who should be paying for this dual? If we make the
wrong one pay, we may not get a factor.

7.2.1 Example

Using Goemans-Williams, if we have three sets, witly, andk each in their own set, and;; = 10,
i = 100, and everyone else is 0.

At some point the penalty far will go down. At time 6.67, andk are 6.67, and gets 3.3 each. But
now we can't raisg’s dual anymore. Because of this we can't prove any factor. We will not attack this
problem head on, though that’s an interesting thing to do. Instead we’ll avoid it.

7.3 Goemans-Williamson form

max Z Ys
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Run the same algorithm, i.e., increasgs until we can find some feasiblés ;;'s.

7.3.1 Equality of linear programs
Lemma 7.1. These two programs are the same.
Proof. Take a feasible solution in one and it is feasible in the other. O

The only problem arises with the equality constraint, because Farka’'s lemma will make it negative. So
change it tov'S Ys < 3 gq;; Ys,; and addys > 0.

Lemma 7.2. The programs are still the same with this modified constraint.

Proof. One direction is still the same. Ta@sﬂ.j Ysij = Ys and thenmax ) ¢ Y works.

Going the other way, decrea$g ;;'s until Ys = Zs@j Ysi;. Then theYy ;;’s are a feasible solution
for the other dual. O

Call this new dual Duall.



7.4 Duall

max Z Ysq
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Now we use Farka’s lemma to prove feasibility, because Farka’s will give proof of infeasibility if the
program is infeasible, and if no such proof exists we know the LP is feasible.

We want to avoid the problem of thes ;;'s. To do so, we note that the algorithm gives fgs, so
constraints become constants:
VS : Z YS,ij

S®ij

Vij: — Z Ys.ij
S:SOij

VS, Zj YS’,ij
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If the program is infeasible, there exist coefficients > 0, o;; > 0, and3s,; > 0 such that the corre-
sponding coefficients of thEs ;;’s are 0

as — agj + Bs,i; =0
Summing the equations:

as Z Ysij — j Z Ysij + 85, Ysj > ZQSYS - Zaijmj

Soij 5:5Gij s ij
Therefore we want to prove thdtvg > 0, o;; > 0, andfBs;; > 0 such thatvg — a;; + Bs,; = 0VS, 1, 7,
we must have g asYs — >, aijmij < 0.
We can get rid of the3s ;; and make the inequalityag, o;; such thatvs — a;; < 0VS, 4, 7, we must
havezs agYg — Zij a;jmi; < 0.
Any feasible solution in Duall is feasible in this new program. But any feasible solution in the new
program is not necessarily feasible in Duall; we have to use Farka’s lemma.
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If ;5 is very big, then the second inequality is easy; so the second inequality is most powerfulwhen
is minimized.«;; = max;;os as (Min value).
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We can also go the other way, and lookagt maximized instead of;; minimized. ag = min;jo g ov;
(max value). Then

Vaij > 0 Zggfsl(aij)ys < Zaijﬂ'ij
S ij

We can convert to either equation. We will use the first because there’s more constraints and hence more
flexibility.

7.5 Solve LP

Our LP is now

max Z Ys
S

Yoo > < .
ag>0 Y ag¥s < d g.lgg(oés)%
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S:e€6(S)
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Lemma 7.3. @ vectors which have at most one non-zero value in their range are sufficient.al.e.
{0,0,1,1,1,1.5,2.3,0.9,0.8} is not allowed, butt = {0,0,0.8,0.8,0,0,0.8,0} is okay.

This is to get rid of the infinite number of constraints problem, simce 0 can be anything.

Proof. amaxy = maxg ag. aodmax = S€cond maxags. Both are nonzero. We can prove this trivially,
because if both are 0, there is no constant, and if one is 0 and the other is not, then the lemma is proved.

“adjust™ ¥max — O2nd max-

1. .1 _ :
o tag = mln(a57@2ndmax)

a?: a% = ag— aé
o? has only one value in its range, whichdg g; ;¢ The constraint corresponding dois the same as the

constraint corresponding to the sumcdfanda?. By induction, we can continue to do this, becauséas
one less value.



To prove consf) = cons@!) + consg?), proveas = ak + a?.

max(ag) + max(ag) > max(ag + aj)

We would need to prove also to get equality, and would do case analysis to prove this.

Wilog, we can just makeax;;os(as) = 1 (normalization). Then the LP is:
max Z Ys
s

Yag € {0,1 agYg < max(ag)mi;
s €4 }zs:ss < ijij@)S(( §)™ij

Ve Z Ys < ce
S:e€d(S)
Y¢ > O

Notation:& = {S1,..., Sx}. € ©ijiff 35 € & suchthats @ ij. f(6) = 3 ;.05 mij-

7.6 NewLP

max Z Ys
S

V& Y Ys < f(®)
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Y > 0

U universe.f : 2V — R such thatf(S) + f(T) > f(SUT) + f(SNT)VS, T CU
&
VSCUTCS,i¢T,i¢s:

fFSULi}) = f(S) < F(TU{i}) — f(T)
Nice utility function, it gives more stuff with less marginal gain from new stuff.
U = 2V base family.f : 22 = R. &1, &y
f(61) + f(62) 2 f(61UG2) + (61N Gy)
If 7;; contributes on rhs, it will be added to Ihs:
f(61UG3) € 61 UG, such thatsS ® ij

If S € &4, m;; contributes ta5;.
If S € &, m;; contributes taS,.
S € 61N 6y, S ® ij will contribute to both.



Lemma 7.4. Feasible dualv’s. Suppose the constraing; and G, are tight. We claim that the constraint
for 61 U G2 and &1 N G4 is also tight.

Proof. Tight constraints:

LHS(&1) = f(&1)

LHS(&2) = £(&2)

LHS(G1 U G,) < f(61UGy)

LHS(61 N 62) < (61N G2)

LHS(6;) + LHS(G2) > (61 U 62) + f(61 N &2) since

LHS(S1) + LHS(62) = LHS(G1 N G2) + LHS(G; U G2)

We can see this with a Venn diagram. Therefore, they are equal and the constraints are tight, O



