Lecture 7

Prize Collecting Steiner Forest Problem

Oct 23, 2004
Lecturer: Kamal Jain
Notes: Neva Cherniavsky

7.1 Problem description

$G=(V, E), C: E \rightarrow \mathbb{R}^{+}$cost function.
$\pi: V \times V \rightarrow \mathbb{R}^{+}$
$\pi(i, j)=\pi(j, i)$
$\pi(i, i)=0$
$H \subseteq G$
If you don't have a path between i and j, then you pay a penalty of $\pi(i, j) . \sum_{e \in H} C_{e}+\sum_{i, j} \pi_{i, j}$ where i, j are in different components.

Last time:

$$
\min \sum_{e \in H} c_{e} x_{e}+\sum_{i, j} A_{i, j} z_{i, j}
$$

We had $x_{e} \in\{0,1\}$, which we relaxed to $x_{e} \geq 0$, and $z_{i j} \in\{0,1\}$, which we relaxed to $z_{i j} \geq 0$.
Definition 7.1. $S \odot i j$ means S is a set that separates i and j. That is, $i \in S, j \notin S$, or $i \notin S, j \in S$.
The equation $z_{i j}+\sum_{e \in \delta(S)} x_{e} \geq 1$ means either we pay the penalty $z_{i j}$ or a path exists. The dual variable corresponds to $Y_{S, i j}$ where S separates i and j.

7.2 Dual

$$
\begin{aligned}
\max \sum_{S, i j} Y_{S, i j} & \\
\forall e \sum_{S: e \in \delta(S), i j: S \odot i j} Y_{S, i j} & \leq c_{e} \\
\forall i j \sum_{S: S \odot i j} Y_{S, i j} & \leq \pi_{i j} \\
Y_{S, i j} & \geq 0
\end{aligned}
$$

Note that there are lots of duals. For dual $Y_{S, i j}$, who should be paying for this dual? If we make the wrong one pay, we may not get a factor.

7.2.1 Example

Using Goemans-Williams, if we have three sets, with i, j, and k each in their own set, and $\pi_{i j}=10$, $\pi_{i k}=100$, and everyone else is 0 .

At some point the penalty for $i j$ will go down. At time $6.67, j$ and k are 6.67 , and i gets 3.3 each. But now we can't raise j 's dual anymore. Because of this we can't prove any factor. We will not attack this problem head on, though that's an interesting thing to do. Instead we'll avoid it.

7.3 Goemans-Williamson form

$$
\begin{aligned}
\max \sum_{S} Y_{S} & \\
\forall S Y_{S} & =\sum_{S \odot i j} Y_{S, i j} \\
\forall e \sum_{S: e \in \delta(S)} Y_{S} & \leq c_{e} \\
\forall i j \sum_{S: S \odot i j} Y_{S, i j} & \leq \pi_{i j} \\
Y_{S} & \geq 0 \\
Y_{S, i j} & \geq 0
\end{aligned}
$$

Run the same algorithm, i.e., increase Y_{S} 's until we can find some feasible $Y_{S, i j}$'s.

7.3.1 Equality of linear programs

Lemma 7.1. These two programs are the same.
Proof. Take a feasible solution in one and it is feasible in the other.
The only problem arises with the equality constraint, because Farka's lemma will make it negative. So change it to $\forall S \quad Y_{S} \leq \sum_{S \odot i j} Y_{S, i j}$ and add $Y_{S} \geq 0$.

Lemma 7.2. The programs are still the same with this modified constraint.
Proof. One direction is still the same. Take $\sum_{S, i j} Y_{S, i j}=Y_{S}$ and then max $\sum_{S} Y_{S}$ works.
Going the other way, decrease $Y_{S, i j}$'s until $Y_{S}=\sum_{S \odot i j} Y_{S, i j}$. Then the $Y_{S, i j}$'s are a feasible solution for the other dual.

Call this new dual Dual1.

7.4 Dual1

$$
\begin{aligned}
\max \sum_{S} Y_{S} & \\
\forall S Y_{S} & \leq \sum_{S \odot i j} Y_{S, i j} \\
\forall e \sum_{S: e \in \delta(S)} Y_{S} & \leq c_{e} \\
\forall i j \sum_{S: S \odot i j} Y_{S, i j} & \leq \pi_{i j} \\
Y_{S} & \geq 0 \\
Y_{S, i j} & \geq 0
\end{aligned}
$$

$\mathrm{OPT}_{I} \geq \mathrm{OPT}_{L P} \geq \mathrm{DUAL}_{L P}$
Now we use Farka's lemma to prove feasibility, because Farka's will give proof of infeasibility if the program is infeasible, and if no such proof exists we know the LP is feasible.

We want to avoid the problem of the $Y_{S, i j}$'s. To do so, we note that the algorithm gives the Y_{S} 's, so constraints become constants:

$$
\begin{aligned}
\forall S: \sum_{S \odot i j} Y_{S, i j} & \geq Y_{S} \\
\forall i j:-\sum_{S: S \odot i j} Y_{S, i j} & \geq-\pi_{i j} \\
\forall S, i j: Y_{S, i j} & \geq 0
\end{aligned}
$$

If the program is infeasible, there exist coefficients $\alpha_{S} \geq 0, \alpha_{i j} \geq 0$, and $\beta_{S, i j} \geq 0$ such that the corresponding coefficients of the $Y_{S, i j}$'s are 0

$$
\alpha_{S}-\alpha_{i j}+\beta_{S, i j}=0
$$

Summing the equations:

$$
\alpha_{S} \sum_{S \odot i j} Y_{S, i j}-\alpha_{i j} \sum_{S: S \odot i j} Y_{S, i j}+\beta_{S, i j} Y_{S, i j} \geq \sum_{S} \alpha_{S} Y_{S}-\sum_{i j} \alpha_{i j} \pi_{i j}
$$

Therefore we want to prove that $\forall \alpha_{S} \geq 0, \alpha_{i j} \geq 0$, and $\beta_{S, i j} \geq 0$ such that $\alpha_{S}-\alpha_{i j}+\beta_{S, i j}=0 \forall S, i, j$, we must have $\sum_{S} \alpha_{S} Y_{S}-\sum_{i j} \alpha_{i j} \pi_{i j} \leq 0$.

We can get rid of the $\beta_{S, i j}$ and make the inequality: $\forall \alpha_{S}, \alpha_{i j}$ such that $\alpha_{S}-\alpha_{i j} \leq 0 \forall S, i, j$, we must have $\sum_{S} \alpha_{S} Y_{S}-\sum_{i j} \alpha_{i j} \pi_{i j} \leq 0$.

Any feasible solution in Dual1 is feasible in this new program. But any feasible solution in the new program is not necessarily feasible in Dual1; we have to use Farka's lemma.

$$
\alpha_{S} \leq \alpha_{i j}
$$

If $\alpha_{i j}$ is very big, then the second inequality is easy; so the second inequality is most powerful when $\alpha_{i j}$ is minimized. $\alpha_{i j}=\max _{i j \odot S} \alpha_{S}$ (min value).

$$
\begin{aligned}
\forall \alpha_{S} \geq 0 \quad \sum_{S} \alpha_{S} Y_{S}-\sum_{i j} \max _{i j \odot S}\left(\alpha_{S}\right) \pi_{i j} & \leq 0 \\
\sum_{S} \alpha_{S} Y_{S} & \leq \sum_{i j} \max _{i j \odot S}\left(\alpha_{S}\right) \pi_{i j}
\end{aligned}
$$

We can also go the other way, and look at α_{S} maximized instead of $\alpha_{i j}$ minimized. $\alpha_{S}=\min _{i j \odot S} \alpha_{i j}$ (max value). Then

$$
\forall \alpha_{i j} \geq 0 \quad \sum_{S} \min _{i j \odot S}\left(\alpha_{i} j\right) Y_{S} \leq \sum_{i j} \alpha_{i j} \pi_{i j}
$$

We can convert to either equation. We will use the first because there's more constraints and hence more flexibility.

7.5 Solve LP

Our LP is now

$$
\begin{aligned}
\max \sum_{S} Y_{S} & \\
\forall \alpha_{S} \geq 0 \sum_{S} \alpha_{S} Y_{S} & \leq \sum_{i j} \max _{i j \odot S}\left(\alpha_{S}\right) \pi_{i j} \\
\forall e \sum_{S: e \in \delta(S)} Y_{S} & \leq c_{e} \\
Y_{S} & \geq 0
\end{aligned}
$$

Lemma 7.3. $\bar{\alpha}$ vectors which have at most one non-zero value in their range are sufficient. I.e. $\bar{\alpha}=$ $\{0,0,1,1,1,1.5,2.3,0.9,0.8\}$ is not allowed, but $\bar{\alpha}=\{0,0,0.8,0.8,0,0,0.8,0\}$ is okay.

This is to get rid of the infinite number of constraints problem, since $\bar{\alpha} \geq 0$ can be anything.
Proof. $\alpha_{\max }=\max _{S} \alpha_{S} . \alpha_{2 n d \max }=$ second $\max _{S} \alpha_{S}$. Both are nonzero. We can prove this trivially, because if both are 0 , there is no constant, and if one is 0 and the other is not, then the lemma is proved.
$\alpha_{\text {adjust }}=\alpha_{\text {max }}-\alpha_{2 n d \text { max }}$.

$$
\begin{aligned}
\alpha^{1}: \alpha_{S}^{1} & =\min \left(\alpha_{S}, \alpha_{2 n d \max }\right) \\
\alpha^{2}: \alpha_{S}^{2} & =\alpha_{S}-\alpha_{S}^{1}
\end{aligned}
$$

α^{2} has only one value in its range, which is $\alpha_{\text {adjust }}$. The constraint corresponding to α is the same as the constraint corresponding to the sum of α^{1} and α^{2}. By induction, we can continue to do this, because α^{1} has one less value.

To prove cons $(\alpha)=\operatorname{cons}\left(\alpha^{1}\right)+\operatorname{cons}\left(\alpha^{2}\right)$, prove $\alpha_{S}=\alpha_{S}^{1}+\alpha_{S}^{2}$.

$$
\max _{S \odot i j}\left(\alpha_{S}^{1}\right)+\max _{S \odot i j}\left(\alpha_{S}^{2}\right) \geq \max _{S \odot i j}\left(\alpha_{S}^{1}+\alpha_{S}^{2}\right)
$$

We would need to prove \leq also to get equality, and would do case analysis to prove this.
Wlog, we can just make $\max _{i j \odot S}\left(\alpha_{S}\right)=1$ (normalization). Then the LP is:

$$
\begin{aligned}
\max \sum_{S} Y_{S} & \\
\forall \alpha_{S} \in\{0,1\} \sum_{S} \alpha_{S} Y_{S} & \leq \sum_{i j} \max _{i j \odot S}\left(\alpha_{S}\right) \pi_{i j} \\
\forall e \sum_{S: e \in \delta(S)} Y_{S} & \leq c_{e} \\
Y_{S} & \geq 0
\end{aligned}
$$

Notation: $\mathfrak{S}=\left\{S_{1}, \ldots, S_{k}\right\} . \mathfrak{S} \odot i j$ iff $\exists S \in \mathfrak{S}$ such that $S \odot i j . f(\mathfrak{S})=\sum_{i j \odot S} \pi_{i j}$.

7.6 New LP

$$
\begin{aligned}
\max \sum_{S} Y_{S} & \\
\forall \mathfrak{S} \sum_{S \in \mathfrak{S}} Y_{S} & \leq f(\mathfrak{S}) \\
\forall e \sum_{S: e \in \delta(S)} Y_{S} & \leq c_{e} \\
Y_{S} & \geq 0
\end{aligned}
$$

U universe. $f: 2^{U} \rightarrow \mathbb{R}$ such that $f(S)+f(T) \geq f(S \cup T)+f(S \cap T) \forall S, T \subseteq U$ \Leftrightarrow
$\forall S \subseteq U, T \subseteq S, i \notin T, i \notin S:$

$$
f(S \cup\{i\})-f(S) \leq f(T \cup\{i\})-f(T)
$$

Nice utility function, it gives more stuff with less marginal gain from new stuff.

$$
\begin{aligned}
& U=2^{V} \text { base family. } f: 2^{2^{V}} \rightarrow \mathbb{R} . \mathfrak{S}_{1}, \mathfrak{S}_{2}: \\
& \qquad f\left(\mathfrak{S}_{1}\right)+f\left(\mathfrak{S}_{2}\right) \geq f\left(\mathfrak{S}_{1} \cup \mathfrak{S}_{2}\right)+f\left(\mathfrak{S}_{1} \cap \mathfrak{S}_{2}\right)
\end{aligned}
$$

If $\pi_{i j}$ contributes on rhs, it will be added to lhs:

$$
f\left(\mathfrak{S}_{1} \cup \mathfrak{S}_{2}\right) \in \mathfrak{S}_{1} \cup \mathfrak{S}_{2} \text { such that } S \odot i j
$$

If $S \in \mathfrak{S}_{1}, \pi_{i j}$ contributes to \mathfrak{S}_{1}.
If $S \in \mathfrak{S}_{2}, \pi_{i j}$ contributes to \mathfrak{S}_{2}.
$S \in \mathfrak{S}_{1} \cap \mathfrak{S}_{2}, S \odot i j$ will contribute to both.

Lemma 7.4. Feasible dual Y_{S}. Suppose the constraints \mathfrak{S}_{1} and \mathfrak{S}_{2} are tight. We claim that the constraint for $\mathfrak{S}_{1} \cup \mathfrak{S}_{2}$ and $\mathfrak{S}_{1} \cap \mathfrak{S}_{2}$ is also tight.

Proof. Tight constraints:
$\operatorname{LHS}\left(\mathfrak{S}_{1}\right)=f\left(\mathfrak{S}_{1}\right)$
$\operatorname{LHS}\left(\mathfrak{S}_{2}\right)=f\left(\mathfrak{S}_{2}\right)$
$\operatorname{LHS}\left(\mathfrak{S}_{1} \cup \mathfrak{S}_{2}\right) \leq f\left(\mathfrak{S}_{1} \cup \mathfrak{S}_{2}\right)$
$\operatorname{LHS}\left(\mathfrak{S}_{1} \cap \mathfrak{S}_{2}\right) \leq f\left(\mathfrak{S}_{1} \cap \mathfrak{S}_{2}\right)$
$\operatorname{LHS}\left(\mathfrak{S}_{1}\right)+\operatorname{LHS}\left(\mathfrak{S}_{2}\right) \geq f\left(\mathfrak{S}_{1} \cup \mathfrak{S}_{2}\right)+f\left(\mathfrak{S}_{1} \cap \mathfrak{S}_{2}\right)$ since
$\operatorname{LHS}\left(\mathfrak{S}_{1}\right)+\operatorname{LHS}\left(\mathfrak{S}_{2}\right)=\operatorname{LHS}\left(\mathfrak{S}_{1} \cap \mathfrak{S}_{2}\right)+\operatorname{LHS}\left(\mathfrak{S}_{1} \cup \mathfrak{S}_{2}\right)$
We can see this with a Venn diagram. Therefore, they are equal and the constraints are tight,

