
Lecture 7

Prize Collecting Steiner Forest Problem

Oct 23, 2004
Lecturer: Kamal Jain

Notes: Neva Cherniavsky

7.1 Problem description

G = (V,E), C : E → R+ cost function.
π : V × V → R+

π(i, j) = π(j, i)
π(i, i) = 0
H ⊆ G
If you don’t have a path betweeni andj, then you pay a penalty ofπ(i, j).

∑
e∈H Ce +

∑
i,j πi,j wherei, j

are in different components.

Last time:
min

∑
e∈H

cexe +
∑
i,j

Ai,jzi,j

We hadxe ∈ {0, 1}, which we relaxed toxe ≥ 0, andzij ∈ {0, 1}, which we relaxed tozij ≥ 0.

Definition 7.1. S � ij meansS is a set that separatesi andj. That is,i ∈ S, j /∈ S, or i /∈ S, j ∈ S.

The equationzij +
∑

e∈δ(S) xe ≥ 1 means either we pay the penaltyzij or a path exists. The dual
variable corresponds toYS,ij whereS separatesi andj.

7.2 Dual

max
∑
S,ij

YS,ij

∀e
∑

S:e∈δ(S),ij:S�ij

YS,ij ≤ ce

∀ij
∑

S:S�ij

YS,ij ≤ πij

YS,ij ≥ 0
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Note that there are lots of duals. For dualYS,ij , who should be paying for this dual? If we make the
wrong one pay, we may not get a factor.

7.2.1 Example

Using Goemans-Williams, if we have three sets, withi, j, andk each in their own set, andπij = 10,
πik = 100, and everyone else is 0.

At some point the penalty forij will go down. At time 6.67,j andk are 6.67, andi gets 3.3 each. But
now we can’t raisej’s dual anymore. Because of this we can’t prove any factor. We will not attack this
problem head on, though that’s an interesting thing to do. Instead we’ll avoid it.

7.3 Goemans-Williamson form

max
∑
S

YS

∀S YS =
∑
S�ij

YS,ij

∀e
∑

S:e∈δ(S)

YS ≤ ce

∀ij
∑

S:S�ij

YS,ij ≤ πij

YS ≥ 0
YS,ij ≥ 0

Run the same algorithm, i.e., increaseYS ’s until we can find some feasibleYS,ij ’s.

7.3.1 Equality of linear programs

Lemma 7.1. These two programs are the same.

Proof. Take a feasible solution in one and it is feasible in the other.

The only problem arises with the equality constraint, because Farka’s lemma will make it negative. So
change it to∀S YS ≤

∑
S�ij YS,ij and addYS ≥ 0.

Lemma 7.2. The programs are still the same with this modified constraint.

Proof. One direction is still the same. Take
∑

S,ij YS,ij = YS and thenmax
∑

S YS works.

Going the other way, decreaseYS,ij ’s until YS =
∑

S�ij YS,ij . Then theYS,ij ’s are a feasible solution
for the other dual.

Call this new dual Dual1.
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7.4 Dual1

max
∑
S

YS

∀S YS ≤
∑
S�ij

YS,ij

∀e
∑

S:e∈δ(S)

YS ≤ ce

∀ij
∑

S:S�ij

YS,ij ≤ πij

YS ≥ 0
YS,ij ≥ 0

OPTI ≥ OPTLP ≥ DUALLP

Now we use Farka’s lemma to prove feasibility, because Farka’s will give proof of infeasibility if the
program is infeasible, and if no such proof exists we know the LP is feasible.

We want to avoid the problem of theYS,ij ’s. To do so, we note that the algorithm gives theYS ’s, so
constraints become constants:

∀S :
∑
S�ij

YS,ij ≥ YS

∀ij : −
∑

S:S�ij

YS,ij ≥ −πij

∀S, ij : YS,ij ≥ 0

If the program is infeasible, there exist coefficientsαS ≥ 0, αij ≥ 0, andβS,ij ≥ 0 such that the corre-
sponding coefficients of theYS,ij ’s are 0

αS − αij + βS,ij = 0

Summing the equations:

αS

∑
S�ij

YS,ij − αij

∑
S:S�ij

YS,ij + βS,ijYS,ij ≥
∑
S

αSYS −
∑
ij

αijπij

Therefore we want to prove that∀αS ≥ 0, αij ≥ 0, andβS,ij ≥ 0 such thatαS−αij +βS,ij = 0∀S, i, j,
we must have

∑
S αSYS −

∑
ij αijπij ≤ 0.

We can get rid of theβS,ij and make the inequality:∀αS , αij such thatαS − αij ≤ 0∀S, i, j, we must
have

∑
S αSYS −

∑
ij αijπij ≤ 0.

Any feasible solution in Dual1 is feasible in this new program. But any feasible solution in the new
program is not necessarily feasible in Dual1; we have to use Farka’s lemma.

αS ≤ αij
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If αij is very big, then the second inequality is easy; so the second inequality is most powerful whenαij

is minimized.αij = maxij�S αS (min value).

∀αS ≥ 0
∑
S

αSYS −
∑
ij

max
ij�S

(αS)πij ≤ 0

∑
S

αSYS ≤
∑
ij

max
ij�S

(αS)πij

We can also go the other way, and look atαS maximized instead ofαij minimized.αS = minij�S αij

(max value). Then
∀αij ≥ 0

∑
S

min
ij�S

(αij)YS ≤
∑
ij

αijπij

We can convert to either equation. We will use the first because there’s more constraints and hence more
flexibility.

7.5 Solve LP

Our LP is now

max
∑
S

YS

∀αS ≥ 0
∑
S

αSYS ≤
∑
ij

max
ij�S

(αS)πij

∀e
∑

S:e∈δ(S)

YS ≤ ce

YS ≥ 0

Lemma 7.3. α vectors which have at most one non-zero value in their range are sufficient. I.e.α =
{0, 0, 1, 1, 1, 1.5, 2.3, 0.9, 0.8} is not allowed, butα = {0, 0, 0.8, 0.8, 0, 0, 0.8, 0} is okay.

This is to get rid of the infinite number of constraints problem, sinceα ≥ 0 can be anything.

Proof. αmax = maxS αS . α2nd max = second maxSαS . Both are nonzero. We can prove this trivially,
because if both are 0, there is no constant, and if one is 0 and the other is not, then the lemma is proved.
αadjust= αmax − α2nd max.

α1 : α1
S = min(αS , α2nd max)

α2 : α2
S = αS − α1

S

α2 has only one value in its range, which isαadjust. The constraint corresponding toα is the same as the

constraint corresponding to the sum ofα1 andα2. By induction, we can continue to do this, becauseα1 has
one less value.
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To prove cons(α) = cons(α1) + cons(α2), proveαS = α1
S + α2

S .

max
S�ij

(α1
S) + max

S�ij
(α2

S) ≥ max
S�ij

(α1
S + α2

S)

We would need to prove≤ also to get equality, and would do case analysis to prove this.

Wlog, we can just makemaxij�S(αS) = 1 (normalization). Then the LP is:

max
∑
S

YS

∀αS ∈ {0, 1}
∑
S

αSYS ≤
∑
ij

max
ij�S

(αS)πij

∀e
∑

S:e∈δ(S)

YS ≤ ce

YS ≥ 0

Notation:S = {S1, . . . , Sk}. S� ij iff ∃S ∈ S such thatS � ij. f(S) =
∑

ij�S πij .

7.6 New LP

max
∑
S

YS

∀S
∑
S∈S

YS ≤ f(S)

∀e
∑

S:e∈δ(S)

YS ≤ ce

YS ≥ 0

U universe.f : 2U → R such thatf(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )∀S, T ⊆ U
⇔
∀S ⊆ U, T ⊆ S, i /∈ T, i /∈ S:

f(S ∪ {i})− f(S) ≤ f(T ∪ {i})− f(T )

Nice utility function, it gives more stuff with less marginal gain from new stuff.

U = 2V base family.f : 22V → R. S1,S2:

f(S1) + f(S2) ≥ f(S1 ∪S2) + f(S1 ∩S2)

If πij contributes on rhs, it will be added to lhs:

f(S1 ∪S2) ∈ S1 ∪S2 such thatS � ij

If S ∈ S1, πij contributes toS1.
If S ∈ S2, πij contributes toS2.
S ∈ S1 ∩S2, S � ij will contribute to both.
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Lemma 7.4. Feasible dualYS . Suppose the constraintsS1 andS2 are tight. We claim that the constraint
for S1 ∪S2 andS1 ∩S2 is also tight.

Proof. Tight constraints:
LHS(S1) = f(S1)
LHS(S2) = f(S2)
LHS(S1 ∪S2) ≤ f(S1 ∪S2)
LHS(S1 ∩S2) ≤ f(S1 ∩S2)
LHS(S1) + LHS(S2) ≥ f(S1 ∪S2) + f(S1 ∩S2) since
LHS(S1) + LHS(S2) = LHS(S1 ∩S2) + LHS(S1 ∪S2)
We can see this with a Venn diagram. Therefore, they are equal and the constraints are tight,
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