Lecture 8

CSE 522: Advanced Algorithms

October 25, 2004
Lecturer: Kamal Jain
Notes: Ning Chen

1 Prize-Collecting Problem Review

Given a graph $G=(V, E)$, a non-negative cost function $c: E \rightarrow Q_{+}$, and a non-negative penalty function $\pi: V \times V \rightarrow Q_{+}$, our goal is minimum-cost way of buying a set of edges and paying the penalty for the edges which are not connected via bought edges.

For a set $S \subset V$, denote $|S \cap\{i, j\}|=1$ by $S \odot(i, j)$. Denote a family of subsets of V by $\mathcal{S}=\left\{S_{1}, \ldots, S_{k}\right\}$. For a family \mathcal{S}, we say $\mathcal{S} \odot(i, j)$ if there is an $S \in \mathcal{S}$ such that $S \odot(i, j)$. Let $\delta(S)=\{(u, v) \mid u \in S$ or $v \in S\}$. Therefore, our problem can be written as the following LP relaxation:

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} x_{e}+\sum_{i, j \in V} \pi_{i, j} z_{i, j} \\
\text { s.t. } & \sum x_{e}+z_{i, j} \geq 1, \quad \forall S \subset V,(i, j) \in V \times V, \mathcal{S} \odot(i, j) \\
& x_{e} \geq 0, \quad \forall e \in E \\
& z_{i, j} \geq 0, \quad \forall(i, j) \in V \times V
\end{array}
$$

The dual program of the above LP is:

$$
\begin{array}{ll}
\max & \sum_{S \subset V, S \odot(i, j)} y_{S_{i, j}} \\
\text { s.t. } & \sum_{S: e \in \delta(S), S \odot(i, j)} y_{S_{i, j}} \leq c_{e}, \quad \forall e \in E \\
& \sum_{S: S \odot(i, j)} y_{S_{i, j}} \leq \pi_{i, j}, \quad \forall(i, j) \in V \times V \\
& y_{S_{i, j} \geq 0, \quad \forall S \subset V, S \odot(i, j)}
\end{array}
$$

2 Dual Linear Program

Recall that in the last lecture, we showed the following program was equivalent to the the above dual program:

$$
\begin{array}{ll}
\max & \sum_{S \subset V} y_{S} \\
\text { s.t. } & \sum_{S: e \in \delta(S)} y_{S} \leq c_{e}, \quad \forall e \in E \\
& \sum_{S \in \mathcal{S}} y_{S} \leq f(\mathcal{S}), \quad \forall \mathcal{S} \subseteq 2^{V} \\
& y_{S} \geq 0, \quad \forall S \subset V
\end{array}
$$

where $f(\mathcal{S})=\sum_{(i, j) \in V \times V, S \odot(i, j)} \pi_{i j}$ is a function from $2^{2^{V}}$ to \mathcal{R}^{+}.
Lemma $2.1 f$ is submodular, that is, for any $\mathcal{S}_{1}, \mathcal{S}_{2}, f\left(\mathcal{S}_{1}\right)+f\left(\mathcal{S}_{2}\right) \geq f\left(\mathcal{S}_{1} \cap\right.$ $\left.\mathcal{S}_{2}\right)+f\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)$.
Proof: The lemma follows from the facts that for any $(i, j) \in V \times V, \mathcal{S}_{1} \odot(i, j)$ or $\mathcal{S}_{2} \odot(i, j)$ is equivalent to $\mathcal{S}_{1} \cup \mathcal{S}_{2} \odot(i, j)$, and $\mathcal{S}_{1} \cap \mathcal{S}_{2} \odot(i, j)$ implies $\mathcal{S}_{1} \odot(i, j)$ and $\mathcal{S}_{2} \odot(i, j)$.

We say an edge $e \in E$ is tight, if the first constraint of the above dual program holds with equality for e. We say a family $\mathcal{S} \subseteq 2^{V}$ is tight, if the second constraint of the above dual program holds with equality for \mathcal{S}.

Lemma 2.2 Take any feasible solution y_{S}, suppose the constraints corresponding to \mathcal{S}_{1} and \mathcal{S}_{2} are tight, then the constraints corresponding to $\mathcal{S}_{1} \cup \mathcal{S}_{2}$ and $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ are also tight.
Proof: According to the above lemma, we have

$$
f\left(\mathcal{S}_{1}\right)+f\left(\mathcal{S}_{2}\right) \geq f\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)+f\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right) .
$$

And furthermore, since y_{S} is feasible,

$$
\sum_{S \in \mathcal{S}_{1} \cap \mathcal{S}_{2}} y_{S}+\sum_{S \in \mathcal{S}_{1} \cup \mathcal{S}_{2}} y_{S}=\sum_{S \in \mathcal{S}_{1}} y_{S}+\sum_{S \in \mathcal{S}_{2}} y_{S} .
$$

The lemma follows from the above two inequalities.

3 Algorithm and Analysis

The details of the algorithm are referred to Jain and Hajiaghayi's paper, The Prize-Collecting Generalized Steiner Tree Problem via a New Approach of Primal-Dual Schema.

Initially, all connected components (vertices) are active. Then we raise the dual variables of all active components at a uniform rate until one of edges e or families \mathcal{S} become tight. Then we set each element in the tight family set to be inactive, and repeat the above process until there is no active connected component. Note that in each iteration, there are exponentially possible family sets. However, we can find a tight set for the next iteration in polynomial time (details omit here).

Let the output of the algorithm be a forest F^{\prime} and a set of pairs $\Gamma \subseteq V \times V$ not connected via F^{\prime}.

Lemma 3.1 $\sum_{e \in F^{\prime}} c_{e} \leq\left(2-\frac{2}{n}\right) \sum_{S \subset V} y_{S}$.
Lemma 3.2 The sum of penalties of marked pairs in Γ is at most $\sum_{S \subset V} y_{S}$.
Therefore, we get the following conclusion:
Theorem 3.1 The algorithm outputs a forest F^{\prime} and a set of pairs Γ which are not connected via F^{\prime} such that

$$
\sum_{e \in F^{\prime}} c_{e}+\sum_{(i, j) \in \Gamma} \pi_{i, j} \leq\left(3-\frac{2}{n}\right) \sum_{S \subset V} y_{S} \leq\left(3-\frac{2}{n}\right) O P T .
$$

