Lecture 8

CSE 522: Advanced Algorithms

October 25, 2004 Lecturer: Kamal Jain Notes: Ning Chen

1 Prize-Collecting Problem Review

Given a graph G = (V, E), a non-negative cost function $c : E \to Q_+$, and a non-negative penalty function $\pi : V \times V \to Q_+$, our goal is minimum-cost way of buying a set of edges and paying the penalty for the edges which are not connected via bought edges.

For a set $S \subset V$, denote $|S \cap \{i, j\}| = 1$ by $S \odot (i, j)$. Denote a family of subsets of V by $S = \{S_1, \ldots, S_k\}$. For a family S, we say $S \odot (i, j)$ if there is an $S \in S$ such that $S \odot (i, j)$. Let $\delta(S) = \{(u, v) \mid u \in S \text{ or } v \in S\}$. Therefore, our problem can be written as the following LP relaxation:

$$\min \qquad \sum_{e \in E} c_e x_e + \sum_{i,j \in V} \pi_{i,j} z_{i,j}$$

$$s.t. \qquad \sum_{e \in \delta(S)} x_e + z_{i,j} \ge 1, \quad \forall \ S \subset V, (i,j) \in V \times V, S \odot (i,j)$$

$$x_e \ge 0, \quad \forall \ e \in E$$

$$z_{i,j} \ge 0, \quad \forall \ (i,j) \in V \times V$$

The dual program of the above LP is:

$$\begin{array}{ll} \max & & \displaystyle \sum_{S \subset V, S \odot(i,j)} y_{S_{i,j}} \\ s.t. & & \displaystyle \sum_{S:e \in \delta(S), S \odot(i,j)} y_{S_{i,j}} \leq c_e, \ \, \forall \; e \in E \\ & & \displaystyle \sum_{S:S \odot(i,j)} y_{S_{i,j}} \leq \pi_{i,j}, \ \, \forall \; (i,j) \in V \times V \\ & & \displaystyle y_{S_{i,j}} \geq 0, \ \, \forall \; S \subset V, S \odot (i,j) \end{array}$$

2 Dual Linear Program

Recall that in the last lecture, we showed the following program was equivalent to the the above dual program:

$$\begin{array}{ll} \max & \sum_{S \subset V} y_S \\ s.t. & \sum_{S:e \in \delta(S)} y_S \leq c_e, \ \forall \ e \in E \\ & \sum_{S \in \mathcal{S}} y_S \leq f(\mathcal{S}), \ \forall \ \mathcal{S} \subseteq 2^V \\ & y_S > 0, \ \forall \ S \subset V \end{array}$$

where $f(\mathcal{S}) = \sum_{(i,j) \in V \times V, S \odot (i,j)} \pi_{ij}$ is a function from 2^{2^V} to \mathcal{R}^+ .

Lemma 2.1 f is submodular, that is, for any $S_1, S_2, f(S_1) + f(S_2) \ge f(S_1 \cap S_2) + f(S_1 \cup S_2)$.

Proof: The lemma follows from the facts that for any $(i, j) \in V \times V$, $S_1 \odot (i, j)$ or $S_2 \odot (i, j)$ is equivalent to $S_1 \cup S_2 \odot (i, j)$, and $S_1 \cap S_2 \odot (i, j)$ implies $S_1 \odot (i, j)$ and $S_2 \odot (i, j)$.

We say an edge $e \in E$ is *tight*, if the first constraint of the above dual program holds with equality for e. We say a family $S \subseteq 2^V$ is *tight*, if the second constraint of the above dual program holds with equality for S.

Lemma 2.2 Take any feasible solution y_S , suppose the constraints corresponding to S_1 and S_2 are tight, then the constraints corresponding to $S_1 \cup S_2$ and $S_1 \cap S_2$ are also tight.

Proof: According to the above lemma, we have

$$f(\mathcal{S}_1) + f(\mathcal{S}_2) \ge f(\mathcal{S}_1 \cap \mathcal{S}_2) + f(\mathcal{S}_1 \cup \mathcal{S}_2).$$

And furthermore, since y_S is feasible,

$$\sum_{S \in \mathcal{S}_1 \cap \mathcal{S}_2} y_S + \sum_{S \in \mathcal{S}_1 \cup \mathcal{S}_2} y_S = \sum_{S \in \mathcal{S}_1} y_S + \sum_{S \in \mathcal{S}_2} y_S.$$

The lemma follows from the above two inequalities.

3 Algorithm and Analysis

The details of the algorithm are referred to Jain and Hajiaghayi's paper, The Prize-Collecting Generalized Steiner Tree Problem via a New Approach of Primal-Dual Schema.

Initially, all connected components (vertices) are *active*. Then we raise the dual variables of all active components at a uniform rate until one of edges e or families S become tight. Then we set each element in the tight family set to be *inactive*, and repeat the above process until there is no active connected component. Note that in each iteration, there are exponentially possible family sets. However, we can find a tight set for the next iteration in polynomial time (details omit here).

Let the output of the algorithm be a forest F' and a set of pairs $\Gamma \subseteq V \times V$ not connected via F'.

Lemma 3.1 $\sum_{e \in F'} c_e \leq (2 - \frac{2}{n}) \sum_{S \subset V} y_S.$

Lemma 3.2 The sum of penalties of marked pairs in Γ is at most $\sum_{S \subset V} y_S$.

Therefore, we get the following conclusion:

Theorem 3.1 The algorithm outputs a forest F' and a set of pairs Γ which are not connected via F' such that

$$\sum_{e \in F'} c_e + \sum_{(i,j) \in \Gamma} \pi_{i,j} \le (3 - \frac{2}{n}) \sum_{S \subset V} y_S \le (3 - \frac{2}{n}) OPT.$$