Lecture 14

CSE 522: Advanced Algorithms

November 15, 2004 Lecturer: Kamal Jain Notes: Ning Chen

1 Max-Flow

In the last class, we discussed max-flow problem in terms of total-unimodularity. Note that primal has integer optimal solution implies dual also has integer optimal solution. Define Dual max-flow by the following linear program:

$$\max \qquad \sum c_{uv} d_{uv} \\ s.t. \qquad d_{st} = 1 \\ d_{uv} \ge 0, \ \forall \ u, v \\ d_{uv} + d_{vw} \ge d_{uvw}, \ \forall \ u, v, w$$

where c_{uv} is the cost of edge (u, v).

The optimal solution should be in the following way: Assume $V = \{s\} \cup S \cup T \cup \{t\}$, where $S \cap T = \emptyset$. Then for each edge $e \in \{(u, v) \mid u \in S, v \in T\}$, the flow across e is unit.

2 Submodularity

Definition 2.1 Given a finite base set U, function $f: 2^U \to R$ is said to be submodular if

$$f(S) + f(T) \ge f(S \cup T) + f(S \cap T),$$

for any $S, T \subseteq U$.

Definition 2.2 Given a finite base set U, function $f: 2^U \to R$ is said to be supermodular if

$$f(S) + f(T) \le f(S \cup T) + f(S \cap T),$$

for any $S, T \subseteq U$.

Definition 2.3 Given a finite base set U, function $f: 2^U \to R$ is said to be modular if

$$f(S) + f(T) = f(S \cup T) + f(S \cap T),$$

for any $S, T \subseteq U$.

Note that the addition of two submodular functions is also submodular. In the following we give a few examples for submodularity.

Example 2.1 $U = \{a_1, \ldots, a_m\}$, where each $a_i \in \mathbb{R}^n$. Define f(S) = rank(S). Then f is submodular.

Example 2.2 Given graph G = (V, E), let U = V. Define

 $f(S) = |\{(u, v) \mid u \in S, v \in V - S\}|.$

Then f is submodular.

Example 2.3 Given graph G = (V, E) and two specific vertices s and t, let $U = V - \{s, t\}$. Define

$$f(S) = |\{(u, v) \mid u \in S \cup \{s\}, v \in V - S\}|.$$

Then f is submodular.

Example 2.4 $U = \{P_1, \ldots, P_m\}$, where P_1, \ldots, P_m are distinct subsets. Define $f(S) = |\bigcup_{i \in S} P_i|$, and g(S) = f(S) - |S|. Both f and g are submodular.

Theorem 2.1 The following definition is equivalent to submodularity: for any $S \subseteq T \subseteq U$, $i \notin S, T$, $f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T)$. *Proof.* If function f is submodular, then

$$\begin{aligned} f(S \cup \{i\}) + f(T) &\geq f((S \cup \{i\}) \cup T) + f((S \cup \{i\}) \cap T) \\ &= f(T \cup \{i\}) + f(S). \end{aligned}$$

On the other hand, to prove submodularity, we need to show

$$f(S) - f(S \cap T) \ge f(S \cup T) - f(T),$$

which is equivalent to

$$f((S \cap T) \cup (S - T)) - f(S \cap T) \ge f(T \cup (S - T)) - f(T).$$

We can prove this by induction on |S - T|.

3 Minimizing Submodular Functions

Submodular function minimization problem means given a finite set U and a submodular function $f: 2^U \to R$, we are required to find a subset $X \subseteq U$ with f(X) minimum.

Theorem 3.1 (Lovász'80) A submodular function f can be minimized in polynomial time.

Assume for each $u \in U$, we have a valuation $x_u \ge 0$, where for any $P \subseteq U$, we have

$$f(P) \geq \sum_{u \in P} x_u, \text{ for } \forall P \subseteq U$$

$$f(P) = \sum_{u \in P} x_u, \text{ if } P = S, T$$

Then

$$f(S) + f(T) \geq f(S \cap T) + f(S \cup T)$$

$$\geq \sum_{u \in S \cap T} x_u + \sum_{u \in S \cup T} x_u$$

$$= \sum_{u \in S} x_u + \sum_{u \in T} x_u$$

$$= f(S) + f(T).$$

If f(S) + f(T) is minimized, $f(S \cap T)$ and $f(S \cup T)$ are also minimized.

4 Application

Let $U = \{P_1, \ldots, P_m\}$, $f(S) = \sum_{i \in S} \xi(S, i)$, where $\xi(S, i) \ge 0$ denotes the payment of player *i* when *S* is selected. We require that

$$\xi(T,i) \leq \xi(S,i), \text{ for any } S \subseteq T.$$
 (1)

Fix S, let $\xi(S, i) = g_i(t)$, where initially, t = 0 and $g_i(t) = 0$ for each $i \in S$. As t increases, $g_i(t)$ increases continuously. Note that when t increases, at some point some subset S' of S becomes tight, that is, $\sum_{i \in S'} \xi(S', i) = f(S')$. Remove S' from S, and increase $g_i(t)$ for other $i \notin S'$ further until S becomes tight. Note that for $S_1, S_2 \subseteq S$, if S_1 becomes tight at time t_1 and S_2 becomes tight at t_2 , where $t_1 \leq t_2$, then $S_1 \cup S_2$ becomes tight at time t_2 .

Theorem 4.1 $\xi(S,i)$ constructed above satisfies $\xi(S,i) \ge 0$ and $\xi(T,i) \le \xi(S,i)$, for any $S \subseteq T$.

Proof. For any $S \subseteq T \subseteq U$, assume at time t, the tight set for S and T is F_S and F_T , respectively. Due to submodularity,

$$f(F_S^t) + f(F_T^t) \ge f(F_S^t \cap F_T^t) + f(F_S^t \cup F_T^t),$$

which implies

$$\sum_{i \in F_S^t} x_i' + \sum_{i \in F_T^t} x_i \ge \sum_{i \in F_S^t \cap F_T^t} x_i' + \sum_{i \in F_S^t \cup F_T^t} x_i$$

And thus,

$$\sum_{i \in F_S^t \cup F_T^t} x_i \geq \sum_{i \in F_S^t \cup F_T^t} x_i'.$$

г		
L		