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1 Max-Flow

In the last class, we discussed max-flow problem in terms of total-unimodularity.
Note that primal has integer optimal solution implies dual also has integer
optimal solution. Define Dual max-flow by the following linear program:

max E Cov A

s.t. dst =1
dyy = 0, ¥V u,v
duv+de Z duvun vu7v7w

where ¢, is the cost of edge (u,v).

The optimal solution should be in the following way: Assume V' = {s} U
SUT U{t}, where SNT = (). Then for each edge e € {(u,v) |u € S,v € T},
the flow across e is unit.

2 Submodularity

Definition 2.1 Given a finite base set U, function f : 2V — R is said to
be submodular if

FS)+f(T) = f(SUT)+ f(SNT),
for any S, T CU.

Definition 2.2 Given a finite base set U, function f : 2V — R is said to
be supermodular if

)+ (1) < fF(SUT) + f(SNT),

for any S, T CU.



Definition 2.3 Given a finite base set U, function f : 2V — R is said to
be modular if

FS)+f(T) = f(SUT)+ f(SNT),
forany S, T CU.

Note that the addition of two submodular functions is also submodular.
In the following we give a few examples for submodularity.

Example 2.1 U = {a1,...,an}, where each a; € R". Define f(S) =
rank(S). Then f is submodular.

Example 2.2 Given graph G = (V, E), let U = V. Define
f(8) =Hwv) [ue SveV -5}
Then f is submodular.

Example 2.3 Given graph G = (V, E) and two specific vertices s and t, let
U=V —{s,t}. Define

F(8) = H(u,v) | uwe SU{shve V- S},
Then f is submodular.

Example 2.4 U = {P,..., Py}, where Pi,..., P, are distinct subsets.
Define f(S) = | Uies By, and g(S) = f(S) —|S|. Both f and g are submod-
ular.

Theorem 2.1 The following definition is equivalent to submodularity: for
any SCT CU,i¢ ST, f(SU{i}) = f(S) =2 F(TU{i}) = f(T).

Proof. If function f is submodular, then

FEUL)+ 1) = fFSUfHuT)+ f(SU{ih)NT)
= [T U{i}) + F(9).

On the other hand, to prove submodularity, we need to show
f(S) = f(SNT) > f(SUT) - f(T),
which is equivalent to
FSNTYU(S=T)) = f(SNT) = f(TU(S-T)) — f(T).

We can prove this by induction on |S — 7. O



3 Minimizing Submodular Functions

Submodular function minimization problem means given a finite set U and
a submodular function f : 2V — R, we are required to find a subset X C U
with f(X) minimum.

Theorem 3.1 (Lovisz’80) A submodular function f can be minimized in
polynomial time.

Assume for each v € U, we have a valuation x, > 0, where for any
P C U, we have

f(P) = > @y, forVPCU
ueP

f(P) = ) @y, if P=38,T
ueP

Then
fE+f(T) = f(SNT)+ f(SUT)

qu+ Z:L‘u

ueSNT ueSUT

= qu+2xu

u€esS ueT

= [(S)+ A(T).
If f(S)+ f(T) is minimized, f(SNT) and f(SUT) are also minimized.

v

4 Application

Let U = {P1,..., Py}, f(S) = Xics&(S,i), where £(S,i) > 0 denotes the
payment of player ¢ when S is selected. We require that

§(T,i) < §(S,i), forany SCT. (1)

Fix S, let £(S,4) = gi(t), where initially, t = 0 and g¢;(¢) = 0 for each i €
S. Astincreases, g;(t) increases continuously. Note that when ¢ increases, at
some point some subset S’ of S becomes tight, that is, > ..o £(5’,4) = f(S').
Remove S’ from S, and increase g;(t) for other i ¢ S’ further until S becomes
tight. Note that for Si,S5 C S, if S; becomes tight at time ¢; and S
becomes tight at to, where t1 < 9, then S7 U Sy becomes tight at time to.



Theorem 4.1 £(S,i) constructed above satisfies £(S,i) > 0 and &(T,i) <
&(S,1), forany S CT.

Proof. For any S C T C U, assume at time ¢, the tight set for S and T is
Fs and Frp, respectively. Due to submodularity,

f(Fs)+ f(Fr) = f(F§ N Fr) + f(F5 U Fr),
which implies
S+ amz S o+ Y
ieF} i€FL ieFiNFL i€FLUFL

And thus,

i€FLUFY, 1€FLUFY,



