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1 Max-Flow

In the last class, we discussed max-flow problem in terms of total-unimodularity.
Note that primal has integer optimal solution implies dual also has integer
optimal solution. Define Dual max-flow by the following linear program:

max
∑

cuvduv

s.t. dst = 1
duv ≥ 0, ∀ u, v

duv + dvw ≥ duvw, ∀ u, v, w

where cuv is the cost of edge (u, v).
The optimal solution should be in the following way: Assume V = {s} ∪

S ∪ T ∪ {t}, where S ∩ T = ∅. Then for each edge e ∈ {(u, v) | u ∈ S, v ∈ T},
the flow across e is unit.

2 Submodularity

Definition 2.1 Given a finite base set U , function f : 2U → R is said to
be submodular if

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ),

for any S, T ⊆ U .

Definition 2.2 Given a finite base set U , function f : 2U → R is said to
be supermodular if

f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ),

for any S, T ⊆ U .
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Definition 2.3 Given a finite base set U , function f : 2U → R is said to
be modular if

f(S) + f(T ) = f(S ∪ T ) + f(S ∩ T ),

for any S, T ⊆ U .

Note that the addition of two submodular functions is also submodular.
In the following we give a few examples for submodularity.

Example 2.1 U = {a1, . . . , am}, where each ai ∈ Rn. Define f(S) =
rank(S). Then f is submodular.

Example 2.2 Given graph G = (V, E), let U = V . Define

f(S) = |{(u, v) | u ∈ S, v ∈ V − S}|.
Then f is submodular.

Example 2.3 Given graph G = (V, E) and two specific vertices s and t, let
U = V − {s, t}. Define

f(S) = |{(u, v) | u ∈ S ∪ {s}, v ∈ V − S}|.
Then f is submodular.

Example 2.4 U = {P1, . . . , Pm}, where P1, . . . , Pm are distinct subsets.
Define f(S) = | ∪i∈S Pi|, and g(S) = f(S)− |S|. Both f and g are submod-
ular.

Theorem 2.1 The following definition is equivalent to submodularity: for
any S ⊆ T ⊆ U , i /∈ S, T , f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T ).
Proof. If function f is submodular, then

f(S ∪ {i}) + f(T ) ≥ f((S ∪ {i}) ∪ T ) + f((S ∪ {i}) ∩ T )
= f(T ∪ {i}) + f(S).

On the other hand, to prove submodularity, we need to show

f(S)− f(S ∩ T ) ≥ f(S ∪ T )− f(T ),

which is equivalent to

f((S ∩ T ) ∪ (S − T ))− f(S ∩ T ) ≥ f(T ∪ (S − T ))− f(T ).

We can prove this by induction on |S − T |. ¤
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3 Minimizing Submodular Functions

Submodular function minimization problem means given a finite set U and
a submodular function f : 2U → R, we are required to find a subset X ⊆ U
with f(X) minimum.

Theorem 3.1 (Lovász’80) A submodular function f can be minimized in
polynomial time.

Assume for each u ∈ U , we have a valuation xu ≥ 0, where for any
P ⊆ U , we have

f(P ) ≥
∑

u∈P

xu, for ∀ P ⊆ U

f(P ) =
∑

u∈P

xu, if P = S, T

Then

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T )

≥
∑

u∈S∩T

xu +
∑

u∈S∪T

xu

=
∑

u∈S

xu +
∑

u∈T

xu

= f(S) + f(T ).

If f(S) + f(T ) is minimized, f(S ∩ T ) and f(S ∪ T ) are also minimized.

4 Application

Let U = {P1, . . . , Pm}, f(S) = Σi∈Sξ(S, i), where ξ(S, i) ≥ 0 denotes the
payment of player i when S is selected. We require that

ξ(T, i) ≤ ξ(S, i), for any S ⊆ T. (1)

Fix S, let ξ(S, i) = gi(t), where initially, t = 0 and gi(t) = 0 for each i ∈
S. As t increases, gi(t) increases continuously. Note that when t increases, at
some point some subset S′ of S becomes tight, that is,

∑
i∈S′ ξ(S

′, i) = f(S′).
Remove S′ from S, and increase gi(t) for other i /∈ S′ further until S becomes
tight. Note that for S1, S2 ⊆ S, if S1 becomes tight at time t1 and S2

becomes tight at t2, where t1 ≤ t2, then S1 ∪ S2 becomes tight at time t2.
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Theorem 4.1 ξ(S, i) constructed above satisfies ξ(S, i) ≥ 0 and ξ(T, i) ≤
ξ(S, i), for any S ⊆ T .
Proof. For any S ⊆ T ⊆ U , assume at time t, the tight set for S and T is
FS and FT , respectively. Due to submodularity,

f(F t
S) + f(F t

T ) ≥ f(F t
S ∩ F t

T ) + f(F t
S ∪ F t

T ),

which implies
∑

i∈F t
S

x′i +
∑

i∈F t
T

xi ≥
∑

i∈F t
S∩F t

T

x′i +
∑

i∈F t
S∪F t

T

xi.

And thus, ∑

i∈F t
S∪F t

T

xi ≥
∑

i∈F t
S∪F t

T

x′i.

¤
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