Lecture 15

Minimization of Submodular Functions in Polynomial Time; Edmond's Theorem

Nov 19, 2004
Lecturer: Kamal Jain
Notes: Neva Cherniavsky

15.1 Submodular function minimization

$f: 2^{U} \rightarrow\{i \mid i$ is a k-bit integer $\}$
$|U|=n$
$\forall S, T f(S)+f(T) \geq f(S \cap T)+f(S \cup T)$
A strongly polynomial algorithm would be polynomial in n. But instead we will have polynomial in (n, k).
Write integer program. S is represented by its characteristic $0-1$ vector. $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where ever f is 1 compute f on that particular S.

$$
\begin{array}{ll}
\min & f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& x_{i} \in\{0,1\}
\end{array}
$$

Relax to: $0 \leq x_{i} \leq 1$. The minimum we'll give by another program because we don't know how to interpret $x_{i}=0.8$ for example.

$$
\begin{aligned}
\min & \sum_{S} \lambda_{S} f(S) \\
\forall i & \sum_{S: i \in S} \lambda_{S}=x_{i} \\
& \sum_{S} \lambda_{S}=1 \\
& \lambda_{S} \geq 0
\end{aligned}
$$

Write the x vector as a convex combination over integer vectors. I.e. $(0.5,0.5)$ becomes $\frac{1}{2}(0,0)+$ $\frac{1}{2}(1,1)$. Think of the unit cube. This function is defined on all corner points of the cube initially. Any point inside can be written as a convex combination of the corner points. We try to minimize the convex combination.

Claim 1. The solution of this LP is optimized at integral $x_{i} \mathrm{~s}$.
In fact, this is true even if f is not submodular.
Proof. Suppose not, i.e., suppose it is minimized at some $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and x_{i} is fractional. Then by definition $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum \lambda_{S} f(S)$. One of the $f(S)$'s must be smaller than $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, so f wasn't minimized.

Given any number $b, f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b .0 \leq x_{i} \leq 1 \Rightarrow$ convex.
Since this is a convex program, we can run the ellipsoid algorithm. If we have a feasible solution for x, y, then we have a solution for $(x+y) / 2$. The convex constraints are:

$$
\begin{gathered}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b \\
f\left(y_{1}, y_{2}, \ldots, y_{n}\right) \leq b \\
0 \leq x_{i} \leq 1 \\
0 \leq y_{i} \leq 1
\end{gathered}
$$

Then there exist λ_{S} 's satisfying

$$
\begin{aligned}
\sum_{S} \lambda_{S}^{x} f(S) & =f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\forall i \sum_{S: i \in S} \lambda_{S}^{x} & =x_{i} \\
\sum_{S} \lambda_{S}^{x} & =1 \\
\lambda_{S}^{x} & \geq 0
\end{aligned}
$$

True for y as well. So:

$$
\begin{aligned}
\sum_{S} \lambda_{S}^{x} f(S) & \leq b \\
\sum_{S} \lambda_{S}^{y} f(S) & \leq b \\
\sum_{S: i \in S} \lambda_{S} & =\left(x_{i}+y_{i}\right) / 2
\end{aligned}
$$

The minimum $\left(\lambda_{S}^{x}+\lambda_{S}^{y}\right) / 2$ will be $\leq b$. So it is also convex.
Claim 2. There exists an optimal solution to this program such that $\forall S, T: S \nsubseteq T$ and $T \nsubseteq S$ then either $\lambda_{S}=0$ or $\lambda_{T}=0$.

In other words, the only valid picture for S is concentric circles; you would never have two separate, non-overlapping circles, or two circles with an intersection.

Proof. Among all optimum solutions of this program, pick the one which maximizes $\sum_{S} \lambda_{S}|S|^{2}$.

$$
|S|^{2}+|T|^{2} \leq|S \cap T|^{2}+|S \cup T|^{2}
$$

Always true. Take maximum, which separates S and T more extremely. We claim this particular optimum solution will satisfy property.

Suppose not. Then $T_{1} \nsubseteq T_{2}, T_{2} \nsubseteq T_{1}$, and $\lambda_{T_{1}}>0$ and $\lambda_{T_{2}}>0$. Take $\epsilon=\min \left(\lambda_{T_{1}}, \lambda_{T_{2}}\right)>0$.

$$
\lambda_{S}^{\prime}= \begin{cases}\lambda_{S} & S \neq T_{1}, S \neq T_{2}, S \neq T_{1} \cap T_{2}, S \neq T_{1} \cup T_{2} \\ \lambda_{S}-\epsilon & S=T_{1}, S=T_{2} \\ \lambda_{S}+\epsilon & S=T_{1} \cap T_{2}, S=T_{1} \cap T_{2}\end{cases}
$$

Can check that all properties of the LP are still satisfied. The objective function is

$$
\min \sum_{S} \lambda_{S}^{\prime} f(S)=\min \sum_{S} \lambda_{S} f(S)-\epsilon\left(f\left(T_{1}\right)+f\left(T_{2}\right)\right)+\epsilon\left(f\left(T_{1} \cap T_{2}\right)+f\left(T_{1} \cup T_{2}\right)\right)
$$

The loss must be negative because the objective function was minimal. In other words, $f\left(T_{1}\right)+f\left(T_{2}\right) \geq$ $f\left(T_{1} \cap T_{2}\right)+f\left(T_{1} \cup T_{2}\right)$. By submodularity, $f\left(T_{1}\right)+f\left(T_{2}\right) \leq f\left(T_{1} \cap T_{2}\right)+f\left(T_{1} \cup T_{2}\right)$. So they must be equal, so λ^{\prime} also minimized the objective function.

But $\sum_{S} \lambda_{S}|S|^{2} \leq \sum_{S} \lambda_{S}^{\prime}|S|^{2}$, which contradicts the assumption that λ_{S} was the solution to the LP that maximized $\sum_{S} \lambda_{S}|S|^{2}$.
$S: \lambda_{S}>0$ are contained in each other. We can write this explicitly:

$$
\begin{array}{ccl}
z_{1}=\min _{x_{i}>0} x_{i} & S_{1}=\left\{i \mid x_{i} \geq z_{1}\right\} & \lambda_{S_{1}}=z_{1} \\
z_{2}=\min _{x_{i}>z_{1}} x_{i} & S_{2}=\left\{i \mid x_{i} \geq z_{2}\right\} & \lambda_{S_{2}}=z_{2}-z_{1} \\
\vdots & \\
z_{k}=\min _{x_{i}>z_{k-1}} x_{i} & S_{k}=\left\{i \mid x_{i} \geq z_{k}\right\} & \lambda_{S_{k}}=z_{k}-z_{k-1} \\
z_{k+1}=1 & S_{k+1}=\left\{i \mid x_{i} \geq 1\right\} & \lambda_{S_{k+1}}=1-z_{k}
\end{array}
$$

This is a unique solution. We can check the constraints easily.
The process is to choose a b and pick x_{i} to be all 0 . If this is infeasible then can run ellipsoid again with smaller bounds (on the ellipsoid). Do a binary search and keep calling ellipsoid until you find a b such that the program is feasible at b but not at $b-1$.

We have an oracle that answers at integer points. Put it inside another that answers for fractional values. If the minimization of the program happens at a fractional value, then it happens at an integral value. So if the ellipsoid algorithm returns a fractional value, we know there's an integral solution and can find it.

15.2 Edmond's theorem

Given a directed graph G and a root r, an arborescence (branching, rooted directed spanning tree) is a spanning tree that has all edges pointing away from r. You might want an arborecense if you have information
at the root r and want to send it to all nodes on the graph. The capacity on all edges is one, and G is allowed to be a multigraph.

An arborescence packing is the maximum number of arborescences $A_{1}, A_{2}, \ldots A_{k}$ such that all are edge disjoint. They all share the same root.

Define $\lambda_{r_{u}}$ to be the number of edge disjoint paths from r to u in $G . k \leq \min _{u}\left(\lambda_{r_{u}}\right)$. Or, in other words, if $\delta_{O U T}(S)$ is the number of outgoing edges of S, then $k \leq \min _{r \in S, \exists u \notin S}\left|\delta_{O U T}(S)\right|$.
Theorem 15.1. Edmond's Theorem: The maximum number of arborescences k is equal to the minimum cut.

$$
k=\min _{u}\left(\lambda_{r_{u}}\right)=\min _{r \in S, \exists u \notin S}\left|\delta_{O U T}(S)\right|
$$

Proof. (Lovasz) Assume $\min _{r \in S, \exists u \notin S}\left|\delta_{O U T}(S)\right|=c$. Initially take G. It has minimum cut c_{G}. Pick an arborescence A_{1} such that $C\left(G-A_{1}\right)=c_{G}-1$. By induction we can keep going down, creating $A_{C(G)}$ number of arborescences. Then $k=C(G)$.

We need to prove the inductive step, that we can find A_{1} with this property. Initially A_{1} has a single vertex, root r. We create edges, maintaining the property that $C(G-A) \geq C(G)-1$. We can keep picking edges and unless A_{1} becomes spanning, we can always maintain this property. Call vertices spanned by A $V(A)$. Need to maintain

$$
\forall S_{r \in S S \neq V(G)}\left|\delta_{O U T}^{G-A}(S)\right| \geq C(G)-1
$$

Definition 15.1. A critical set S satisfies

1. $\delta_{O U T}^{G-A}(S)=C(G)-1$
2. $V(G)-V(A) \nsubseteq S ; \exists u \mid u \notin S$ but $u \in V(G)-V(A)$
3. $r \in S$
$V(G)-V(A)$ are points outside the arborescence. We don't want to pick an edge for which $d_{O U T}^{G-A}(S)=$ $C(G)-1$, because then we'll have a problem.

Take any maximal critical set S. Can it contain all of A ? No, because that would violate 1. It must leave some vertices outside. \exists point $v, v \in V(A)$ and $v \notin S$. Because of 2 , \exists point $u, u \notin S, u \in V(G)-V(A)$.

We will show something stronger: $\exists u, u \notin S, u \in V(G)-V(A)$, and $v-u$ is an edge in G. This is the edge we will pick. We prove this existence using maximality.

$$
\delta_{O U T}^{G-A}(S \cup\{v\})=C(G)
$$

Since S is maximal, it must violate one of $1,2,3$; it still satisfies 2,3 so it must violate 1 . When we include v inside, there must be an edge in $G-A$ that it goes to. If it doesn't go to $G-A$, throw it away. If it goes to $G-A$, then include it and the induction works.

This won't harm any other critical set T. Why? Suppose not. Assume T is hurt by removing v. $\left|\delta_{\text {OUT }}(S)\right|+\left|\delta_{\text {OUT }}(T)\right| \geq\left|\delta_{\text {OUT }}(S \cap T)\right|+\left|\delta_{\text {OUT }}(S \cup T)\right|$ by submodularity.
$\left|\delta_{\text {OUT }}(S)\right|=C(G)-1$
$\left|\delta_{\text {OUT }}(T)\right|=C(G)-1$
The other ones must also be $C(G)-1$ because that's what we're maintaining inductively (can't be $C(G)-2$). So T cannot be violated, because $S \cup T$ is also a critical set. But S was maximal, so can't hurt it.

