
Lecture 15

Minimization of Submodular Functions in
Polynomial Time; Edmond’s Theorem

Nov 19, 2004
Lecturer: Kamal Jain

Notes: Neva Cherniavsky

15.1 Submodular function minimization

f : 2U → {i|i is a k-bit integer}
|U | = n
∀S, Tf(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T)
A strongly polynomial algorithm would be polynomial in n. But instead we will have polynomial in (n, k).

Write integer program. S is represented by its characteristic 0-1 vector. f(x1, x2, . . . , xn), where ever
f is 1 compute f on that particular S.

min f(x1, x2, . . . , xn)

xi ∈ {0, 1}

Relax to: 0 ≤ xi ≤ 1. The minimum we’ll give by another program because we don’t know how to
interpret xi = 0.8 for example.

min
∑

S

λSf(S)

∀i
∑

S:i∈S

λS = xi

∑

S

λS = 1

λS ≥ 0

Write the x vector as a convex combination over integer vectors. I.e. (0.5, 0.5) becomes 1
2 (0, 0) +

1
2(1, 1). Think of the unit cube. This function is defined on all corner points of the cube initially. Any
point inside can be written as a convex combination of the corner points. We try to minimize the convex
combination.

1

Claim 1. The solution of this LP is optimized at integral xis.

In fact, this is true even if f is not submodular.

Proof. Suppose not, i.e., suppose it is minimized at some f(x1, x2, . . . , xn) and xi is fractional. Then by
definition f(x1, x2, . . . , xn) =

∑

λSf(S). One of the f(S)’s must be smaller than f(x1, x2, . . . , xn), so f
wasn’t minimized.

Given any number b, f(x1, x2, . . . , xn) ≤ b. 0 ≤ xi ≤ 1 ⇒ convex.

Since this is a convex program, we can run the ellipsoid algorithm. If we have a feasible solution for x,
y, then we have a solution for (x + y)/2. The convex constraints are:

f(x1, x2, . . . , xn) ≤ b

f(y1, y2, . . . , yn) ≤ b

0 ≤ xi ≤ 1

0 ≤ yi ≤ 1

Then there exist λS’s satisfying
∑

S

λx
Sf(S) = f(x1, x2, . . . , xn)

∀i
∑

S:i∈S

λx
S = xi

∑

S

λx
S = 1

λx
S ≥ 0

True for y as well. So:
∑

S

λx
Sf(S) ≤ b

∑

S

λy
Sf(S) ≤ b

∑

S:i∈S

λS = (xi + yi)/2

The minimum (λx
S + λy

S)/2 will be ≤ b. So it is also convex.

Claim 2. There exists an optimal solution to this program such that ∀ S, T : S * T and T * S then either
λS = 0 or λT = 0.

In other words, the only valid picture for S is concentric circles; you would never have two separate,
non-overlapping circles, or two circles with an intersection.

Proof. Among all optimum solutions of this program, pick the one which maximizes
∑

S λS|S|
2.

2

|S|2 + |T |2 ≤ |S ∩ T |2 + |S ∪ T |2

Always true. Take maximum, which separates S and T more extremely. We claim this particular optimum
solution will satisfy property.

Suppose not. Then T1 * T2, T2 * T1, and λT1
> 0 and λT2

> 0. Take ε = min(λT1
, λT2

) > 0.

λ′
S =







λS S 6= T1, S 6= T2, S 6= T1 ∩ T2, S 6= T1 ∪ T2

λS − ε S = T1, S = T2

λS + ε S = T1 ∩ T2, S = T1 ∩ T2

Can check that all properties of the LP are still satisfied. The objective function is

min
∑

S

λ′
Sf(S) = min

∑

S

λSf(S) − ε(f(T1) + f(T2)) + ε(f(T1 ∩ T2) + f(T1 ∪ T2))

The loss must be negative because the objective function was minimal. In other words, f(T1) + f(T2) ≥
f(T1 ∩ T2) + f(T1 ∪ T2). By submodularity, f(T1) + f(T2) ≤ f(T1 ∩ T2) + f(T1 ∪ T2). So they must be
equal, so λ′ also minimized the objective function.

But
∑

S λS |S|
2 ≤

∑

S λ′
S |S|

2, which contradicts the assumption that λS was the solution to the LP that
maximized

∑

S λS|S|
2.

S : λS > 0 are contained in each other. We can write this explicitly:

z1 = min
xi>0

xi S1 = {i|xi ≥ z1} λS1
= z1

z2 = min
xi>z1

xi S2 = {i|xi ≥ z2} λS2
= z2 − z1

...

zk = min
xi>zk−1

xi Sk = {i|xi ≥ zk} λSk
= zk − zk−1

zk+1 = 1 Sk+1 = {i|xi ≥ 1} λSk+1
= 1 − zk

This is a unique solution. We can check the constraints easily.

The process is to choose a b and pick xi to be all 0. If this is infeasible then can run ellipsoid again with
smaller bounds (on the ellipsoid). Do a binary search and keep calling ellipsoid until you find a b such that
the program is feasible at b but not at b − 1.

We have an oracle that answers at integer points. Put it inside another that answers for fractional values.
If the minimization of the program happens at a fractional value, then it happens at an integral value. So if
the ellipsoid algorithm returns a fractional value, we know there’s an integral solution and can find it.

15.2 Edmond’s theorem

Given a directed graph G and a root r, an arborescence (branching, rooted directed spanning tree) is a span-
ning tree that has all edges pointing away from r. You might want an arborecense if you have information

3

at the root r and want to send it to all nodes on the graph. The capacity on all edges is one, and G is allowed
to be a multigraph.

An arborescence packing is the maximum number of arborescences A1, A2, . . . Ak such that all are edge
disjoint. They all share the same root.

Define λru
to be the number of edge disjoint paths from r to u in G. k ≤ minu(λru

). Or, in other words,
if δOUT (S) is the number of outgoing edges of S, then k ≤ minr∈S,∃u/∈S |δOUT (S)|.

Theorem 15.1. Edmond’s Theorem: The maximum number of arborescences k is equal to the minimum cut.

k = min
u

(λru
) = min

r∈S,∃u/∈S
|δOUT (S)|

Proof. (Lovasz) Assume minr∈S,∃u/∈S |δOUT (S)| = c. Initially take G. It has minimum cut cG. Pick an
arborescence A1 such that C(G − A1) = cG − 1. By induction we can keep going down, creating AC(G)

number of arborescences. Then k = C(G).

We need to prove the inductive step, that we can find A1 with this property. Initially A1 has a single
vertex, root r. We create edges, maintaining the property that C(G−A) ≥ C(G)− 1. We can keep picking
edges and unless A1 becomes spanning, we can always maintain this property. Call vertices spanned by A
V (A). Need to maintain

∀Sr∈SS 6=V (G) |δG−A
OUT (S)| ≥ C(G) − 1

Definition 15.1. A critical set S satisfies

1. δG−A
OUT (S) = C(G) − 1

2. V (G) − V (A) * S; ∃u|u /∈ S but u ∈ V (G) − V (A)

3. r ∈ S

V (G)−V (A) are points outside the arborescence. We don’t want to pick an edge for which dG−A
OUT (S) =

C(G) − 1, because then we’ll have a problem.

Take any maximal critical set S. Can it contain all of A? No, because that would violate 1. It must leave
some vertices outside. ∃ point v, v ∈ V (A) and v /∈ S. Because of 2, ∃ point u, u /∈ S, u ∈ V (G) − V (A).

We will show something stronger: ∃u, u /∈ S, u ∈ V (G)− V (A), and v − u is an edge in G. This is the
edge we will pick. We prove this existence using maximality.

δG−A
OUT (S ∪ {v}) = C(G)

Since S is maximal, it must violate one of 1, 2, 3; it still satisfies 2, 3 so it must violate 1. When we include
v inside, there must be an edge in G − A that it goes to. If it doesn’t go to G − A, throw it away. If it goes
to G − A, then include it and the induction works.

This won’t harm any other critical set T . Why? Suppose not. Assume T is hurt by removing v.
|δOUT (S)| + |δOUT (T)| ≥ |δOUT (S ∩ T)| + |δOUT (S ∪ T)| by submodularity.
|δOUT (S)| = C(G) − 1
|δOUT (T)| = C(G) − 1
The other ones must also be C(G)−1 because that’s what we’re maintaining inductively (can’t be C(G)−2).
So T cannot be violated, because S ∪ T is also a critical set. But S was maximal, so can’t hurt it.

4

