Lecture 15

Minimization of Submodular Functions in
Polynomial Time; Edmond’s Theorem

Nov 19, 2004
Lecturer: Kamal Jain
Notes: Neva Cherniavsky

15.1 Submodular function minimization

f:2Y — {iliis a k-bit integer}

Ul =n

VS, Tf(S)+ f(T)> f(SNT)+ f(SUT)

A strongly polynomial algorithm would be polynomial in n. But instead we will have polynomial in (n, k).

Write integer program. S is represented by its characteristic 0-1 vector. f(z1,z2,...,y), where ever
fis 1 compute f on that particular .S.

min f(xlyx%"'?xn)
x; € {0,1}

Relax to: 0 < z; < 1. The minimum we’ll give by another program because we don’t know how to
interpret ; = 0.8 for example.

min Y Agf(S)
S

A4 Z /\S:l’i

S:es
Z Ag =1
S

Ag >0

Write the z vector as a convex combination over integer vectors. Le. (0.5,0.5) becomes 3(0,0) +
%(1, 1). Think of the unit cube. This function is defined on all corner points of the cube initially. Any
point inside can be written as a convex combination of the corner points. We try to minimize the convex
combination.

Claim 1. The solution of this LP is optimized at integral x;s.

In fact, this is true even if f is not submodular.

Proof. Suppose not, i.e., suppose it is minimized at some f(z1,x2,...,x,) and z; is fractional. Then by

definition f(x1,za,...,z,) = > Agf(S). One of the f(S)’s must be smaller than f(x1,x2,...,2y), so f

wasn’t minimized. O
Given any number b, f(x1,x2,...,2,) < b. 0 < z; <1 = convex.

Since this is a convex program, we can run the ellipsoid algorithm. If we have a feasible solution for z,
y, then we have a solution for (z + y)/2. The convex constraints are:

flxy, e, ... xy)
fyiy2,- - Yn)
0<z; <1
0<y; <1

b
b

IA A

Then there exist Ag’s satisfying

DOXEF(S) = flar, @, 1)
S
Vi Z)\f% =

S:es
S - 1
S

A%

v
o

True for y as well. So:

dONGF(S) < b
S
D ONF(S) < b
S
YoAs = (zit+u)/2

S:esS

The minimum (A% + A%)/2 will be < b. So it is also convex.

Claim 2. There exists an optimal solution to this program such that V S, T : S ¢ T and T' ¢ S then either
Ag =0or Ap =0.

In other words, the only valid picture for S is concentric circles; you would never have two separate,
non-overlapping circles, or two circles with an intersection.

Proof. Among all optimum solutions of this program, pick the one which maximizes) ¢ Ag|S 2.

IS+ |T? < |SNTP+|SUT]
Always true. Take maximum, which separates S and T more extremely. We claim this particular optimum
solution will satisfy property.

Suppose not. Then 71 € Tb, To ¢ T1, and Ay, > 0 and Ap, > 0. Take € = min(Ag,, Apy,) > 0.

As S#ET,S#T2, S #T1NT, S #T1 UT
Ng=<S dg—€ S=T1,8=T,
Ast+e S=T1NT,S=T1NTy

Can check that all properties of the LP are still satisfied. The objective function is

min » " Nof(S) =min Y " Asf(S) — e(f(T1) + f(T2)) + e(f(T1 N To) + (T UTy))
S S

The loss must be negative because the objective function was minimal. In other words, f(77) + f(T2) >
f(I1NTy) + f(Th UTy). By submodularity, f(71) + f(T2) < f(1T1 NT3) + f(T1 UT»). So they must be
equal, so)\’ also minimized the objective function.

But > ¢ Ag|S|? < 3¢ N|S|%, which contradicts the assumption that Ag was the solution to the LP that
maximized Y ¢ As|S|% O

S : Ag > 0 are contained in each other. We can write this explicitly:
z1 =minz; S;={ilz; >z} As, =2
x; >0

zo = min x; So={ilr; > 22} Mg, =20 — 21
xT;>21

2= min z; Sk ={ilz; >z} As, =2k — 2K-1
Ti>Zg—1

zpp1 =1 Sppr={ilz; 21} g, =1—2

This is a unique solution. We can check the constraints easily.

The process is to choose a b and pick x; to be all 0. If this is infeasible then can run ellipsoid again with
smaller bounds (on the ellipsoid). Do a binary search and keep calling ellipsoid until you find a b such that
the program is feasible at b but not at b — 1.

We have an oracle that answers at integer points. Put it inside another that answers for fractional values.
If the minimization of the program happens at a fractional value, then it happens at an integral value. So if
the ellipsoid algorithm returns a fractional value, we know there’s an integral solution and can find it.

15.2 Edmond’s theorem

Given a directed graph GG and a root r, an arborescence (branching, rooted directed spanning tree) is a span-
ning tree that has all edges pointing away from . You might want an arborecense if you have information

at the root r and want to send it to all nodes on the graph. The capacity on all edges is one, and G is allowed
to be a multigraph.

An arborescence packing is the maximum number of arborescences A1, Ao, ... A such that all are edge
disjoint. They all share the same root.

Define), to be the number of edge disjoint paths from 7 to w in G. k < min,, (A,). Or, in other words,
if Sour(S) is the number of outgoing edges of .S, then k < min,¢g 3,¢5 [dour(S)]-

Theorem 15.1. Edmond’s Theorem: The maximum number of arborescences k is equal to the minimum cut.

k=min(\,) = Teglaiggs ldour(S)|

Proof. (Lovasz) Assume min,cg 3,¢5 [Sour(S)| = c. Initially take G. It has minimum cut cg. Pick an
arborescence A such that C'(G' — A;) = cg — 1. By induction we can keep going down, creating A¢(q)
number of arborescences. Then & = C(G).

We need to prove the inductive step, that we can find A; with this property. Initially A; has a single
vertex, root . We create edges, maintaining the property that C'(G — A) > C(G) — 1. We can keep picking
edges and unless A; becomes spanning, we can always maintain this property. Call vertices spanned by A
V(A). Need to maintain

VS essevic) 10607 (9)] > C(G) -1

Definition 15.1. A critical set S satisfies
1. 8Gp7(S) = C(G) -1
2. V(G) = V(A) € S; Julu ¢ Sbutu € V(G) — V(A)
3.res

V(G)—V (A) are points outside the arborescence. We don’t want to pick an edge for which d 85?(5) =

C(G) — 1, because then we’ll have a problem.

Take any maximal critical set S. Can it contain all of A? No, because that would violate 1. It must leave
some vertices outside. 3 point v,v € V(A) and v ¢ S. Because of 2, 3 point u, u ¢ S, u € V(G) — V(A).

We will show something stronger: Ju,u ¢ S,u € V(G) —V(A), and v — u is an edge in G. This is the
edge we will pick. We prove this existence using maximality.

0SS U{}) = C(G)

Since S is maximal, it must violate one of 1, 2, 3; it still satisfies 2, 3 so it must violate 1. When we include
v inside, there must be an edge in G — A that it goes to. If it doesn’t go to G — A, throw it away. If it goes
to G — A, then include it and the induction works.

This won’t harm any other critical set 7. Why? Suppose not. Assume 7' is hurt by removing v.
[oour(S)| + [dovr(T)| > |dour (S NT)| + [0our (S UT)| by submodularity.
ldour(S)] =C(G) — 1
lbour(T)| =C(G) — 1
The other ones must also be C'(G)—1 because that’s what we’re maintaining inductively (can’t be C'(G)—2).
So T cannot be violated, because S U T is also a critical set. But .S was maximal, so can’t hurt it. |

