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17.1 Network Coding

Start with a directed acyclic graph (DAG) with a single sender and many receivers, where each receiver has
k-edge connectivity from the sender. We assume that each edgehas unit capacity, say, 1 bit/second.

If our initial DAG does not meet this criterion, we can easilyconstruct one that does: first, divide edge
capacities by their greatest common divisor, then replace eachc-capacity edge withc unit-capacity edges.
Our unit capacities are no longer in the same units as before,but this is not a problem: the relative capacities
have been maintained.

Under these conditions, each recipient can receivek bits/second from the sender.

Today, we prove two bounds onq, the field size of the bits sent. For ordinary, Boolean bits,q = 2, but
we may need a larger field size to handle conflicts among the paths shared by different receivers.

First, we will prove the upper boundq = O( # receivers). Second, we will demonstrate the lower bound
q = Ω(

√
# receivers).

17.1.1 Upper bound

For ease of discussion, we consider a DAG with one sender and three receivers:r (red), b (blue), andg
(green). However, all methods demonstrated will apply to anarbitrary number of receivers. In this DAG,
there arek edge-disjoint paths from the sender tor, from the sender tob, and from the sender tog. We name
the bits being sent by the receiverb1, b2, . . . , bk.

Theorem 17.1.The field sizeq is O(k # receivers).

We first state and proof an algebra theorem that will be helpful in fixing this upper bound:

Theorem 17.2.Consider a vector spaceV of dimensiond overGF (q). This vector space cannot be written
as a union of fewer than or equal toq proper subspaces.

Proof. RepresentV as the union ofp subspaces:

V = V1 ∪ V2 ∪ · · · ∪ Vp
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Sincep > 1, and0 is an element of each subspace, we must double-count it at least once. Therefore, the
total number of elements in the union is at most:pq(d−1) − 1. (The(d − 1) exponent is because these are
proper subspaces.) This expression can never be smaller than the size ofV , which isqd:

pq(d−1) − 1 ≥ qd

This implies the following strict inequality:

pqd−1 > qd

Solving forp, we find thatp > q.

We now proceed to prove an upper bound onq:

Proof. Initially, we assign one bit to each path tor, one bit to each path tob, and one bit to each path tog.
Of course, since the paths to each receiver may overlap, the assignments may be inconsistent: one link of
a path shared byr andb may simultaneously be assignedb1 andb2, for example. The following algorithm
will resolve these conflicts until consistent assignments have been found for each edge, while maintaining
the property that each receiver receives all the information sent.

We draw ak by k matrix for each receiver. Each row corresponds to one of thek paths from the sender
to the receiver. Each column corresponds to one of thek bits being sent. For example, ifk = 4 and the
third row of r’s matrix is the vector[0 1 2 0], then the sender will send the vectorb2 + 2b3 along the third
edge-disjoint path tor. Note that as long as this matrix is non-singular, the receiver can reconstruct allk
bits.

At the outset, before any conflicts are resolved, each matrixis the identity: one bit for each path. We
wish to resolve all conflicts between receivers while maintaining non-singularity.

Using the original DAG, we can list the edges in a topologically sorted order, so that if edgea appears
before edgeb in any path, thena appears beforeb in the sort. Our algorithm will resolve conflicts, edge by
edge, in this order. Once all conflicts have been resolved fora particular edge, we never need to reconsider
that edge.

To resolve a conflict on a particular edge, we assume that eachof up tok receivers has a different vector
they wish to send along that edge. WLOG, let us focus on the receiversr, b, andg, and assume that the edge
in question is along thekth path for each. Name their initial vectorsvk

r , vk
b , andvk

g . What requirements will
we place on these vectors?

We first require that each receiver receives all information, i.e.:

v1
r , v

2
r , v3

r , . . . , v
k
r = (GF (q))k

v1
b , v

2
b , v3

b , . . . , v
k
b = (GF (q))k

v1
g , v

2
g , v3

g , . . . , v
k
g = (GF (q))k

We want to find a new vectorv = v′kr = v′kb = v′kg , such that:

1. Each receiver still has complete information, using the new vector. Specifically,

v1
r , v

2
r , v3

r , . . . , v
′k
r = (GF (q))k

v1
b , v

2
b , v3

b , . . . , v
′k
b = (GF (q))k

v1
g , v

2
g , v3

g , . . . , v
′k
g = (GF (q))k
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Figure 17.1: Network topology requiring a field sizeq that isΩ(
√

t). Each receiverti is connected to all but
two of then intermediate nodes.

2. The information to pass along this edge can be constructedfrom the information on the incoming
paths. Specifically,

v ∈ lin span(vk
b , vk

b , vk
g )

We now apply Theorem 17.2 to show that a valid vector does in fact exist. LetL = lin span(vk
r , vk

b , vk
g ).

Let Lr refer to the set of objectionable vectors inL, according to receiverr. “Objectionable vectors” are
those that are linear combinations ofr’s other vectors, and thus reduce the rank ofr’s matrix:

Lr = {v ∈ L|v ∈ lin span(v1
r , v

2
r , . . . , v

k−1
r )}

Lr = L ∩ lin span(v1
r , v

2
r , . . . , v

k−1
r )

Clearly,Lr is a space since it’s the intersection of two vector spaces. Furthermore, it’s a proper subspace
of L sincevk

r 6∈ L, butvk
r ∈ L.

Choose field sizeq such thatL 6= Lr ∪Lb ∪Lg(∪ · · · ∪Lt). By the Theorem 17.2, this must be true for
all q ≥ t, the number of receivers (which is the maximum number of subspaces in the union).

The running time for this algorithm scales with the number offlows.

17.1.2 Lower bound

Theorem 17.3.The field sizeq is Ω(
√

t).

Proof. Construct a graph as in Figure 17.1 with a single sender,n intermediate nodes, andt =
(

n
2

)

receivers.
From the sender to each intermediate edge, there is an edgeci. Each receivertj receives information from
all but 2 of then intermediate nodes, sok = n − 2.

Let C = {c1, c2, c3, . . . , cn| possible sequences that can be observed onn edges}. C is a code with
minimum distance 3. By the perfect code bound,qk[1 + (q − 1)n] ≤ qk+2. qk is the number of non-
overlapping balls,1 + (q − 1)n is the volume per ball, andqk+2 is the total volume of the space.

From this, we can derive:1 + (q − 1)n ≤ q2, soq ≥ n − 1. Recall thatt =
(

n
2

)

, soq = Ω(
√

t).
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With a single sender, this bound is optimal. With multiple senders, it is unknown whether or not this
bound is optimal.

17.2 Introduction to Lattices

Recall the following previous result: given a convex setS such that

1. S has a strong separation oracle.

2. S has a ball of radiusε.

3. S is contained in an ellipsoidE (given) of volumeR

we can then find a point insideS, in time polynomial in dimension andlog(R/ε).

But what if we lack the elipsoidE, or the ball of radiusε? Given a convex setS such that

1. S has a strong separation oracle.

2. S There is a rational point inS with encoding lengthφ.

we can then find a point insides in time polynomial in dimension andφ.

Furthermore, there also exists an optimal solution with small encoding length to the linear program:

min
∑

i cxi

∀j
∑

i aijxi ≥ bj

This solution can be found by using cosets divided by the determinant, for the corner point solution.

Definition 17.1. A lattice is an integer span{~a1, ~a2, . . . , ~an} = {z1 ~a1 + z2 ~a2 + · · ·+ zn ~an|zi ∈ Z}, where
each~ai is a rational vector.

The requirement that each~ai is a rational vector is necessary – otherwise, the span couldbe dense. For
example, the single-dimensional span of{1,

√
2} is dense.

Definition 17.2. If L = lin span{b1, . . . , bm} andb1, . . . , bm are all linearly independent, thenb1, . . . , bm

are called abasisof L.

In one dimension, the basis is simply the greatest common divisor of the rationalsa1, . . . , an. Therefore,
the basis can be seen as a generalization of the gcd.

Lemma 17.4. Given a lattice ind-dimension by vectors~a1, . . . , ~an, we can find the basis ofL, ~b1, . . . , ~bm,
in polynomial time.

Because gcd is a special case, this algorithm is not stronglypolynomial.

If the set isn’t linearly independent, then you can findx1, . . . , xn ∈ Z such that
∑

i xi~ai = 0. If
x1 = ±1, then ~a1 is a linear combination of~a2, . . . , ~an. But this may not be true, such as in the example
{6, 10}.

We will prove this lemma next time.
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