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17.1 Network Coding

Start with a directed acyclic graph (DAG) with a single semaled many receivers, where each receiver has
k-edge connectivity from the sender. We assume that eachtedgenit capacity, say, 1 bit/second.

If our initial DAG does not meet this criterion, we can easifynstruct one that does: first, divide edge
capacities by their greatest common divisor, then replach ecapacity edge witle unit-capacity edges.
Our unit capacities are no longer in the same units as bdfatehis is not a problem: the relative capacities
have been maintained.

Under these conditions, each recipient can reckibés/second from the sender.

Today, we prove two bounds ap the field size of the bits sent. For ordinary, Boolean hjts; 2, but
we may need a larger field size to handle conflicts among thes ghiared by different receivers.

First, we will prove the upper boungd= O( # receiver$. Second, we will demonstrate the lower bound
q = Q(V #receivers).

17.1.1 Upper bound

For ease of discussion, we consider a DAG with one senderkard teceivers:r (red), b (blue), andg
(green). However, all methods demonstrated will apply t@dnitrary number of receivers. In this DAG,
there are: edge-disjoint paths from the sendertdrom the sender té, and from the sender o We name
the bits being sent by the receivar, bo, . . . , by.

Theorem 17.1. The field sizg is O(k # receivers.

We first state and proof an algebra theorem that will be helpffixing this upper bound:

Theorem 17.2.Consider a vector spac€ of dimensiond overGF'(q). This vector space cannot be written
as a union of fewer than or equal toproper subspaces.

Proof. Represeni” as the union op subspaces:

V=VUulhu---UV,

1



Sincep > 1, and0 is an element of each subspace, we must double-count itsttdeee. Therefore, the
total number of elements in the union is at magsft“~Y — 1. (The(d — 1) exponent is because these are
proper subspaces.) This expression can never be smalfetiteaize ofl”, which isq¢:

pg Y — 1> ¢4

This implies the following strict inequality:
gt > o

Solving forp, we find thatp > ¢. O
We now proceed to prove an upper boundgon

Proof. Initially, we assign one bit to each pathsitpone bit to each path th and one bit to each path to

Of course, since the paths to each receiver may overlap,sgigranents may be inconsistent: one link of
a path shared by andb may simultaneously be assignedandb,, for example. The following algorithm
will resolve these conflicts until consistent assignmemtgehbeen found for each edge, while maintaining
the property that each receiver receives all the infornmasient.

We draw ak by k matrix for each receiver. Each row corresponds to one okthaths from the sender
to the receiver. Each column corresponds to one ofkti@s being sent. For example, if = 4 and the
third row of ’s matrix is the vectoif0 1 2 0], then the sender will send the vecter+ 2b5 along the third
edge-disjoint path te. Note that as long as this matrix is non-singular, the regedan reconstruct al
bits.

At the outset, before any conflicts are resolved, each matiilke identity: one bit for each path. We
wish to resolve all conflicts between receivers while maimi@ non-singularity.

Using the original DAG, we can list the edges in a topolodycabrted order, so that if edgeappears
before edge in any path, ther appears beforé in the sort. Our algorithm will resolve conflicts, edge by
edge, in this order. Once all conflicts have been resolved fmarticular edge, we never need to reconsider
that edge.

To resolve a conflict on a particular edge, we assume that@agihtok receivers has a different vector
they wish to send along that edge. WLOG, let us focus on theweisr, b, andg, and assume that the edge
in question is along theth path for each. Name their initial vector§, o7, andvg. What requirements will
we place on these vectors?

We first require that each receiver receives all informatian:

v%,vg,vg,...,vg = (GF(q))z
v?,v%,vg,...,vz = (GF(q))k
Vg, Vg, Vg, - -, Vg = (GF(q))

We want to find a new vectar = v'* = v/} = v’];, such that:

1. Each receiver still has complete information, using tee mector. Specifically,

vl w2 03, 0 = (GF(g))F

TYYry Yro

k
vg,vg,vg’, .. ,v/z = (GF(q))*
U‘;?U;?US? e 7,U/g = (GF(Q))k



Figure 17.1: Network topology requiring a field sig¢hat isQ2(+/¢). Each receivet; is connected to all but
two of then intermediate nodes.

2. The information to pass along this edge can be constridobed the information on the incoming
paths. Specifically,

v elin Spar{vf,vf,v;f)

We now apply Theorem 17.2 to show that a valid vector doesdnefgist. LetL = lin span(vk, v¥, vk).
Let L, refer to the set of objectionable vectorsiin according to receiver. “Objectionable vectors” are
those that are linear combinationsrad other vectors, and thus reduce the rank’sfmatrix:

L, ={v € Llv € linspar(v},v2,..., vk 1)}
L, = LNlinspar(v},v2,... 01

ry Urs s Yp

Clearly, L, is a space since it’s the intersection of two vector spacegh&rmore, it's a proper subspace
of L sincev® ¢ L, butvf € L.

Choose field sizq such thatl, # L, U L, U Ly(U--- U L;). By the Theorem 17.2, this must be true for
all ¢ > t, the number of receivers (which is the maximum number of gabas in the union).

O

The running time for this algorithm scales with the numbefl@ivs.

17.1.2 Lower bound

Theorem 17.3.The field sizey is Q(\/1).

Proof. Construct a graph as in Figure 17.1 with a single sendetermediate nodes, ard= (g) receivers.
From the sender to each intermediate edge, there is ansgdgach receivet; receives information from
all but 2 of then intermediate nodes, 30=n — 2.

Let C = {¢1,¢2,c3,...,c,| possible sequences that can be observed etiges}. C' is a code with
minimum distance 3. By the perfect code bougtjl + (¢ — 1)n] < ¢**2. ¢* is the number of non-
overlapping balls] + (¢ — 1)n is the volume per ball, angF*2 is the total volume of the space.

From this, we can derivet + (¢ — 1)n < ¢?, soq > n — 1. Recall that = (), sog = Q(/). O
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With a single sender, this bound is optimal. With multipleders, it is unknown whether or not this
bound is optimal.

17.2 Introduction to Lattices

Recall the following previous result: given a convex Sesuch that

1. S has a strong separation oracle.
2. S has a ball of radius.

3. Sis contained in an ellipsoid (given) of volumeR

we can then find a point insid®, in time polynomial in dimension anidg(R/¢).
But what if we lack the elipsoidv, or the ball of radiug? Given a convex sef such that

1. S has a strong separation oracle.

2. S There is a rational point i¥' with encoding length.

we can then find a point insidein time polynomial in dimension ang.
Furthermore, there also exists an optimal solution withlsereoding length to the linear program:

min ) . cx;
Vj 2 aijri > b

This solution can be found by using cosets divided by thergetant, for the corner point solution.

Definition 17.1. A latticeis an integer spafai, az, ..., d,} = {z1a1 + 22a3 + - - - + zpay|2; € Z}, where
eacha; is a rational vector.

The requirement that eachj is a rational vector is necessary — otherwise, the span dmuttense. For
example, the single-dimensional span{of/2} is dense.

Definition 17.2. If L = lin spar{by,...,b,} andby,...,b,, are all linearly independent, thén, ..., b,,
are called @asisof L.

In one dimension, the basis is simply the greatest commasadtiof the rationals., . . . , a,,. Therefore,
the basis can be seen as a generalization of the gcd.

-

Lemma 17.4. Given a lattice ind-dimension by vectors, .. . , a,, we can find the basis df, b}, oy b,
in polynomial time.
Because gcd is a special case, this algorithm is not strqrajynomial.

If the set isn't linearly independent, then you can find...,z, € Z such that)_ z;a; = 0. If
x1 = *1, thena; is a linear combination of3, . .., a,. But this may not be true, such as in the example
{6,10}.

We will prove this lemma next time.



