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Abstract

This paper considers the following type of quadratic pro-
gramming problem. Given an arbitrary matrixA, whose di-
agonal elements are zero, findx ∈ {−1, 1}n such thatxTAx
is maximized. Our approximation algorithm for this prob-
lem uses the canonical semidefinite relaxation and returns a
solution whose ratio to the optimum is inΩ(1/ logn). This
quadratic programming problem can be seen as an exten-
sion to that of maximizingxTAy (wherey’s components are
also±1). Grothendieck’s inequality states that the ratio of
the optimum value of the latter problem to the optimum of
its canonical semidefinite relaxation is bounded below by a
constant.

The study of this type of quadratic program arose from a
desire to approximate the maximum correlation in correla-
tion clustering. Nothing substantive was known about this
problem; we present anΩ(1/ logn) approximation, based
on our quadratic programming algorithm.

We can also guarantee that our quadratic programming
algorithm returns a solution to theMAX CUT problem that
has a significant advantage over a random assignment.

1. Introduction

In this paper we describe an approximation algorithm
for a fairly general type of quadratic programming prob-
lem. Given matrixA, with null diagonal entries, maximize

n
∑

i=1

n
∑

j=1

aijxixj , s.t.xi ∈ {−1, 1} for all i , (1)

a problem we call MAX QP. We enforce theaii = 0 condi-
tion because the termsaiixixi are equal toaii and so are just
additive constants.1 It is important to note that, fori 6= j,
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theaij terms are arbitrary real values and are not restricted
to being nonnegative. The goal is to return a solution that
is at least some fractionα of the optimum of (1),OPTQP.
Our approximation problem is well-defined, forOPTQP is
strictly positive unlessA is the zero matrix (see Lemma 4).

There exists a body of work that has developed approx-
imation algorithms for maximizing generic quadratic pro-
grams. However, they use a slightly different definition of
approximation algorithm [16], partly because they do not
assume that theaii values are zero. The difficulty of allow-
ing negativeaii values is that the ratio between the semidef-
inite relaxation and the integral optimum could become ar-
bitrarily large. Therefore, rather than trying to achieve an
objective value some fractionα of the optimum, their al-
gorithms achieverelative accuracyµ if the objective value
that is returned,val, satisfies

val − MIN

MAX − MIN
≥ µ ,

whereMAX (MIN) is the maximum (minimum) value of all
feasible solutions of the quadratic program. Nesterov [16]
presented an SDP-based algorithm with relative accuracy
π/2−1 for quadratic programming. Unfortunately these rel-
ative accuracy algorithms guarantee nothing in terms of the
usual type of approximation factor. For example, a MAX QP
instance corresponding to a complete unweighted MAX -
CUT problem hasMAX ∈ O(n), but MIN ∈ −Ω(n2),
and so a constantµ algorithm would not even guarantee re-
turning a positive solution. We note in passing that Nes-
terov [16] described a2/π approximation algorithm, in the
usual sense, for instances in whichA is positive semidefi-
nite.

Our formulation of MAX QP was partly inspired by a
problem in correlation clustering [3], which we detail be-
low. Alon and Naor [2] provided further inspiration with
their success in approximating the CUTNORM by trying to

1 Actually it would not harm any of our arguments if we were to allow
the aii values to be nonnegative, but the exposition is simpler if we
just ignore these terms.



maximize
m

∑

i=1

n
∑

j=1

aijxiyj , s.t.xi, yj ∈ {−1, 1} for all i,j . (2)

We can cast (2) as an instance of (1) by letting

z =

(

x
y

)

and Â =

[

0 A
0 0

]

, (3)

so (2) is nowzTÂz. Seeing that MAX QP is an extension of
Alon and Naor’s problem, we spend some time detailing the
similarities and differences between them.

A quadratic program may be used to model a graph op-
timization problem in whichaij represents some property
of the edge betweeni and j. One immediate observation
from (3) is that if (2) represents the maximization of a func-
tion on abipartitegraph, then (1) represents the maximiza-
tion of the same function on acompletegraph.

Alon and Naor’s problem has two key properties that
ours does not. Firstly, different rounding techniques can be
used for the{xi} and the{yj} in (2), and secondly, (2) has
MAX = −MIN (simply replacey with −y in one of the ex-
treme solutions). It turns out that these facts are crucial to
their analysis.

Both (1) and (2) have canonical semidefinite relaxations,
respectively,

max
∑

i,j aij vi · vj

s.t. vi · vi = 1 for all i
vi ∈ R

n ,
(4)

and

max
∑

i,j aij ui · vj

s.t. ui · ui = vj · vj = 1 for all i, j
ui, vj ∈ R

n .
(5)

Unfortunately the term-by-term analysis that Goemans and
Williamson [10] used in their0.878 SDP-based approxima-
tion algorithm for MAX CUT—which is, in fact, a shifted
special case of MAX QP—fails for both (4) and (5) because
some of the terms might be negative. Nevertheless, Megret-
ski [15] showed that the ratio ofOPTQP to the optimum of
the SDP relaxation (4) is inΩ(1/ log n).2 Grothendieck’s
inequality [11], a key result in functional analysis, states
that the integrality gap between (5) and (2) is in fact a con-
stant. The exact value of this constant is not known, but
Alon and Naor converted proofs of the existence of the con-
stant bound [17, 14]—which are also bounds on its size—
into approximation algorithms for (2).

Alon and Naor’s first algorithm is deterministic: an ex-
plicit set of fourwise independent vectors in{−1, 1}n is

2 Our approximation algorithm in Section 2 is an algorithmicversion of
Megretski’s proof.

constructed. They showed that there exists one such vec-
tor whose projections onto the optimal SDP solution vec-
tors, truncated to lie in[−1, 1], give a fractional solution no
less than1/27 of optimum (see the beginning of Section 2 to
see why a good fractional solution is sufficient). The second
algorithm is simply the random hyperplane split of Goe-
mans and Williamson, but with a more involved analysis.
This technique treats thex andy variables identically, but
the analysis cannot be applied to our problem because it re-
lies on the ratio ofMAX to −MIN being at least some con-
stant. The third algorithm shows that there exist two new
families of vectors,{u′

i} and {v′j}, so that the expected
value of everyxiyj term obtained by splitting theu′ and
v′ vectors with a random hyperplane is some common con-
stant multiple of the correspondingui · vj value. Theseu′

andv′ vectors are found by maximizing a semidefinite pro-
gram. None of these techniques seems to apply directly to
MAX QP, though we adapt some of the ideas.

Correlation clustering[3], which we also referred to as
clustering with qualitative informationin earlier work [6],
is a relatively new problem. We are provided with pairwise
judgments of the similarity ofn data items. In the simplest
version of the problem there are three possible inputs for
each pair: similar (akapositive), dissimilar (akanegative),
or no judgment. We refer to an instance in which a judg-
ment is given for every pair ascomplete, otherwise it is a
generalinstance.

In the original paper of Bansal, Blum and Chawla [3],
the aim was to partition the items into clusters so that the
number of pairs in agreement with the judgments would
be maximized (MAX AGREE). A pair is called anagree-
mentif it is a positive pair within one cluster or a negative
pair across two distinct clusters. In like manner, we might
want to minimize the number of disagreements (MINDIS-
AGREE), where adisagreementis a positive pair across two
different clusters or a negative pair in one cluster. These
two problems are equivalent from an optimization point of
view, but rather different from an approximation point of
view. For general instances, there exist constant factor al-
gorithms [6, 18] for MAX AGREE, but MINDISAGREE is as
hard as the minimum multicut problem and (consequently)
only O(log n) algorithms are known [6, 7, 8].

Bansal, Blum and Chawla [3] propose the open prob-
lem of maximizing thecorrelation in correlation clustering
(MAX CORR). The correlation is the difference between the
number of agreements and the number of disagreements.
Their only observation was that the optimal value of this
quantity is always inΩ(n) for a complete instance; no
nontrivial approximation guarantees were known for MAX -
CORR. Based on our approximation algorithm for MAX QP,
we obtain an algorithm for MAX CORR.



1.1. Our results

Our algorithm for MAX QP is the first approximation
algorithm, in the usual sense, for maximizing a generic
quadratic program. The algorithm uses a standard semidef-
inite relaxation [10], bears some similarity to the first al-
gorithm of Alon and Naor [2], and has approximation fac-
tor in Ω(1/ log n). Our rounding procedure does not sim-
ply assign±1 values based on a random hyperplane cut of
the vectors, but takes into account the sizes of the projec-
tions of a random vector onto the solution vectors. If nec-
essary, these projections are truncated to lie in the[−1, 1]
interval; from these truncated values an integral solutionis
obtained using randomized rounding.

A random assignment of items in a MAX CUT instance
will on average result in a cut of1/2 of the total weight
of edges. We say that a cut hasgain δ if a 1/2 + δ frac-
tion of the total weight of edges lie across the cut. The
gain is analogous to the idea of the advantage over a ran-
dom assignment [13]. Our MAX QP algorithm provides an
Ω(1/ log(1/δ)) approximation for the optimal MAX CUT

gainδ. Since MAX CUT is ashiftedspecial case of MAX QP,
it is not difficult to show that it is NP-hard to obtain an ap-
proximation algorithm for MAX QP with factor higher than
11/13.

The MAX CORR problem restricted to two clusters is a
special case of MAX QP, in whichaij is 1 for each pos-
itive pair ij and aij is −1 for each negative pairij. We
show that taking the better of the singleton-clusters solution
and the best two-cluster solution provides a1/3 approxima-
tion for the general MAX CORR problem. Therefore, we ob-
tain anΩ(1/ log n) approximation for MAX CORR, the first
(nontrivial) approximation algorithm known.

1.2. Organization

We present our approximation algorithm for MAX QP in
Section 2. Then in Section 3 we explore the relationship be-
tween MAX CUT and quadratic programming, and provide
some further intuition for our approximation algorithm. In
Section 4 we show how our algorithm can be applied to the
MAX CORR problem. Finally, we present some open prob-
lems in Section 5.

2. Maximizing quadratic programs

We start by showing that the optimum value of MAX QP,
modified so that the variables are allowed to take any value
in the range[−1, 1], is no larger than that of the original
problem (1). Consider the following randomized rounding
technique for some fractional solutiony ∈ [−1, 1]n:

xi =

{

−1, with probability 1−yi

2

+1, with probability 1+yi

2

, (6)

where eachxi is rounded independently of the others. A
simple calculation shows that, fori 6= j, E[xixj ] = yiyj;
since theaii terms are zero, the expected objective value of
the integralsolution equals that of the fractional solution.

So, to the approximation algorithm. We first solve the
semidefinite relaxation (4) of the quadratic program in poly-
nomial time, up to arbitrary precision. We will then round
the SDPvectorsolution{vi} to a fractional solutiony. It
may be that someyi values fall outside the range[−1, 1];
if so, we will truncate them to±1. We show that this hap-
pens so rarely that the truncation does not alter the expected
value of the solution significantly. Finally, we will use the
rounding technique (6) in the previous paragraph to obtain
a{−1, 1} solutionx.

ApproxMaxQP

1. Obtain an optimal solution{vi} to the SDP (4).
2. Create vectorr in which theri are drawn independently

from the unit Normal distribution.
3. Letzi = vi · r/T , whereT > 0 will be specified later.
4. If |zi| > 1, thenyi = zi/|zi|, otherwiseyi = zi.
5. Obtainxi from yi using rounding procedure (6).

The solutionx is clearly in{−1, 1}n, and it was obtained in
polynomial time, so the remainder of this section will show:

Theorem 1 The ratio of the expected value of the solution
x returned byApproxMaxQPto the maximum value of the
quadratic program(1) is in Ω(1/ logn), if T =

√
4 log n.

Lemma 1 The expected value ofzizj is vi · vj/T 2.

Proof: Since the distribution of ther vector isspherically
symmetric, we can assume thatvi = e1 andvj = ae1 +be2.
ThereforeTzi = vi · r = r1 andTzj = vj · r = ar1 + br2.
Hence

T 2
E[zizj ] = aE[r2

1] + bE[r1r2]

= aVar[r1] + bE[r1]E[r2]

= a = vi · vj .

2

If we were lucky and every|zi| were at most1, then we
would have a1/T 2 approximation, since the optimum value
of (4) is at least the optimum of (1). Since this might not
happen, we need to analyze the truncated solutiony. We
show that the expected value of∆ij = zizj − yiyj is small
in magnitude.

Lemma 2 |E[∆ij ]| is less than8e−T 2/2.

Proof: Let us consider the expected value of|∆ij | on var-
ious regions (ofr). We assume thatn is sufficiently large
thatT ≥ 1. On the regionS = {r : |zi| ≤ 1, |zj| ≤ 1},
yi = zi andyj = zj, soES [∆ij ] = 0.

Now, due to rotational symmetry, we may again assume
that vi = e1 andvj = ae1 + be2. So the probability that



r lies in the regionB = {r : zi > 1} is Pr[r1 > T ] =
1 − Φ(T ), whereΦ is the cdf for the Normal distribution.
Therefore,

EB[|yiyj |] ≤ EB[1] = Pr[r ∈ B] = 1 − Φ(T ) . (7)

Furthermore,

EB[T 2|zizj |] =
∫ +∞

−∞

∫ +∞

T

|s(as + bt)| 1

2π
e−s2/2e−t2/2ds dt . (8)

Let us consider each term of (8) one at a time,
∫

∞

T

s2e−s2/2ds = −se−s2/2

∣

∣

∣

∞

T
+

∫

∞

T

e−s2/2ds

= Te−T 2/2 +
√

2π(1 − Φ(T )) .

Also,
∫

∞

T

|s|e−s2/2ds = e−T 2/2 and
∫ +∞

−∞

|t|e−t2/2dt = 2 .

Putting it all together, we see that

EB[T 2|zizj|] ≤
( |a|T√

2π
+

|b|
π

)

e−T 2/2

+ |a|(1 − Φ(T ))

< Te−T 2/2 + (1 − Φ(T )),

(9)

as|a|, |b| ≤ 1. SinceT ≥ 1, combining (7) and (9), we have

EB[|∆ij |] ≤ EB[|zizj |+ |yiyj |] <
e−T 2/2

T
+2(1−Φ(T )) ,

where the first inequality is merely the triangle inequality.
By symmetry, we will have the same result on the re-

gion {r : zi < −1}. As there was nothing special abouti,
the same bound also applies for the regions{r : zj > 1}
and{r : zj < −1}. The union of these four regions is the
complement of the setS. Since the function|∆ij | is non-
negative, its expectation onS is less than

4

T
e−T 2/2 + 8(1 − Φ(T )) . (10)

But ES [∆ij ] is 0, so (10) is a bound onE[|∆ij |], and hence
on |E[∆ij ]|. We can bound the second term of (10) by

4

∫

∞

T

te−t2/2dt = 4e−T 2/2 ,

asT ≥ 1. Therefore,|E[∆ij ]| < 8e−T 2/2. 2

We now show that we are close to obtaining an
Ω(1/ logn) approximation. LetOPTSDP stand for the op-
timum value of (4).

Lemma 3

E[
∑

i,j

aijyiyj ] >
OPTSDP

T 2
− 8e−T 2/2

∑

i,j

|aij |

Proof:

E[
∑

i,j

aijyiyj] = E[
∑

i,j

aijzizj ] + E[
∑

i,j

aij(−∆ij)]

From Lemma 1, we know that the first term of the right hand
side isOPTSDP/T 2. The second term is

−E[
∑

i,j

aij∆ij ] = −
∑

i,j

aijE[∆ij ]

≥ −

∣

∣

∣

∣

∣

∣

∑

i,j

aijE[∆ij ]

∣

∣

∣

∣

∣

∣

≥ −
∑

i,j

|aij ||E[∆ij ]| ,

which Lemma 2 proves is greater than−8e−T 2/2
∑

i,j |aij |.
2

The obvious next step is to show that thiserror term is
insignificant. Recall thatOPTQP stands for the optimum
value of (1).

Lemma 4

OPTQP ≥ 1

n
·
∑

i,j

|aij |

Proof: Consider constructing a random matching on ann-
vertex complete graph in the following way. Select an edge
uniformly at random, remove the endpoints from the graph,
and repeat. It is easy to show that the probability of an edge
being included in the matching is1/(n−1) if n is even and
1/n if n is odd. Now, if we assign to each edge the weight
|aij |, then there exists some matching on then vertices of
total weight at least

∑

i,j |aij |/n (the expected value under
this random construction).

Given a matching, we randomly construct a vectorx ∈
{−1, 1}n whose expected QP objective value is the same as
the matching weight. For each edgeij in the matching, we
independently setxi to ±1 uniformly at random; we letxj

equalxi if and only if aij is nonnegative. The unmatched
vertex, if n is odd, is assigned a value independently. For
each matched pairij we score|aij |, for every other pair the
expected score is0, hence the same total as the matching.
ThereforeOPTQP is at least

∑

i,j |aij |/n.
2

We can now prove Theorem 1.

Proof: Substituting Lemma 4 into the statement of
Lemma 3, withT =

√
4 log n, we see that

E[
∑

i,j

aijyiyj ] > OPTQP[
1

4 log n
− 8n−2 · n] ,



which is inΩ(OPTQP/ logn). Finally, note that

E[
∑

i,j

aijxixj ] = E[E[
∑

i,j

aijxixj | y]] = E[
∑

i,j

aijyiyj ].

2

3. Observations

3.1. The relationship with MAX CUT

Maximizing the gain in the MAX CUT problem can eas-
ily be formulated as a quadratic program. Letw stand for
the total weight of edges in a MAX CUT instance andδ
stand for the gain of the optimal cut—recall that a cut of
sizew(1/2 + δ) has gainδ. The Goemans-Williamson al-
gorithm guarantees only that its solution will have a cut of
at leastw(0.439 + 0.878δ), which may have no gain at all.
Zwick’s outward rotations method [20] or Feige and Lang-
berg’sRPR2 algorithm for LIGHTMAX CUT [9] might ap-
proximate the gain well. In fact, our algorithm is an instan-
tiation of Feige and Langberg’s rounding scheme, using an
s-linear function. These authors do not, however, present
any theoretical analysis that applies to our setting.

We can express MAX CUT as a special case of quadratic
programming,by settingA as follows. For all pairsi < j for
which there exists an edge of weightwij , let aij = −wij ;
for all other values ofi andj, let aij = 0. For a given solu-
tion x ∈ {−1, 1}n, the value of the quadratic programq(x),
the value of the cutk(x) and the value of its gaing(x), sat-
isfy q(x) = 2k(x) − w = 2w g(x).

Lemma 5 If δ∗ is the optimum gain of aMAX CUT in-
stance,ApproxMaxQPreturns a solution whose gain is in

Ω

(

δ∗

log(1/δ∗)

)

.

Proof: Lemma 3 says thatApproxMaxQPwill return a so-
lution x for whichq(x) is at least

OPTQP

T 2
− 8e−T 2/2w , (11)

asw is the sum of the|aij | terms. By definition,OPTQP =

2wδ∗, so if we setT =
√

32 log(1/δ∗) then it is not hard
to show that (11) is greater than

OPTQP

64 log(1/δ∗)
, for all δ∗ ≤ 1/2 .

Since the gain,g(x), is a constant multiple ofq(x), the re-
sult follows. 2

Just as we have a reduction to obtain an approximation
algorithm for maximizing the gain of a cut, we can also ob-
tain a hardness result for MAX QP from one for MAX CUT.

Lemma 6 It is NP-hard to approximateMAX QP within
factor11/13 + ε.

Proof: Let α now stand for the hardness factor for MAX -
CUT. SinceOPTQP = 2OPTCUT − w, distinguishing be-
tween the casesOPTCUT ≥ k andOPTCUT < αk is equiv-
alent to distinguishing betweenOPTQP ≥ 2k − w and
OPTQP ≤ 2αk − w. The ratio of these two bounds on
OPTQP is

2αk − w

2k − w
= α + w

α − 1

2k − w
.

The lemma follows from the16/17 + ε hardness result for
MAX CUT [12, 19], which holds fork = 17w/21. 2

3.2. Correlated random variables and distribu-
tions on cuts

We make some general observations about rounding so-
lutions to the MAX QP SDP relaxation and point out some
interesting connections to generating{−1, 1} random vari-
ables with given correlations. The value of the SDP solution
is

∑

i,j aijvi · vj . Suppose we could generate{−1, 1} ran-
dom variablesXi such thatE[XiXj ] = Cvi · vj for all
i, j; this would immediately lead to aC-approximation al-
gorithm. In fact, Alon and Naor’s third algorithm (based on
Krivine’s proof) is exactly of this form: they transform the
vectorsui, vj to obtain new vectorsu′

i, v
′

j and apply random
hyperplane rounding to these new vectors to get a distribu-
tion on{−1, 1} random variables with the desired property.
We reiterate that, in doing this, they crucially use the fact
that they can apply one transformation for the{ui} and a
another one for the{vj}; hence this technique does not ap-
ply to rounding MAX QP.

One might wonder whether the existence of an appropri-
ate distribution on{−1, 1} random variables is a lucky co-
incidence. In fact we demonstrate (the possibly surprising
fact) that such a distribution always exists.

In order to do this, we write an LP formulation for the
maximum gap of the SDP for afixedvector solution. Given
a set of vectorsvi produced by an optimal SDP solution,
consider the problem of finding theA matrix that maxi-
mizes the gap betweenOPTSDP andOPTQP. The problem
can be formulated as an LP as follows (note that theaij are
variables here).

min c
s.t.

∑

ij aij vi · vj = 1
∑

ij aij xixj ≤ c for all x ∈ {−1, 1}n

The accompanying dual program, below, has onepx vari-
able for every possible setting ofx ∈ {−1, 1}n.

max b
s.t.

∑

x px = 1
∑

x px xixj = b vi · vj for all i, j

Thesepx values specify a probability distribution on thexis.
We know that the primal LP has optimal value no lower



than the gap of the SDP for MAX QP. By duality, there ex-
ists a distribution on{−1, 1} random variables such that
E[xixj ] = b vi · vj , whereb, which could be a function of
n, is at least the worst case gap of the SDP for MAX QP.

Our analysis in Section 2 shows that the gap of the
MAX QP SDP is inΩ(1/ logn), which has the following
interesting interpretation. Given a positive semidefinitema-
trix K, it is well known that there exist correlated normal
random variablesXi such thatE[XiXj ] = kij . What if
you wanted{−1, 1} random variables instead? Our results
show that if we scale the (off-diagonal) entries of the cor-
relation matrix byC ∈ O(1/ log n), then we can guarantee
the existence of{−1, 1} random variables with the appro-
priate correlations.

4. Maximizing correlation in correlation clus-
tering

We now turn to the correlation clustering application. A
series of papers [3, 4, 7, 8, 6, 18] resolved many of the is-
sues related to the MAX AGREE and MINDISAGREE prob-
lems. Recall that in the MAX CORR problem the aim is to
maximize the difference between the number of agreements
and disagreements. Until now, no nontrivial approximation
algorithm was known for MAX CORR, but we demonstrate
that theΩ(1/ logn) approximation for MAX QP can be used
to obtain an algorithm with the same asymptotic factor for
MAX CORR.

Let corr(κ) stand for the correlation of clusteringκ.
There is only one way of placing each item into a singleton
cluster: call this clusteringκn and letOPTn = corr(κn).
In contrast, there are several ways of splitting the items into
two clusters, but we letκOPT

2 stand for one of those with
maximal correlationOPT2. Finally,κOPT is some partition-
ing that has maximum correlationOPT.

Lemma 7

OPTn + 2OPT2 ≥ OPT .

Proof: Let the four quantities,w+, a+, w− anda−, stand
for the numbers of positive (negative) pairs within (across)
clusters in ouroptimalsolutionκOPT. By definition,

OPT = w+ − a+ − w− + a− .

If we split everything up into singletons, we see that

OPTn = −w+ − a+ + w− + a− .

Although we cannot calculateOPT2, we can at least pro-
vide a lower bound for it. Consider constructing a partition-
ing by randomly assigning eachcluster in κOPT to one of
two new superclusters. The expected correlation of the re-
sult of this random procedure is a lower bound forOPT2.

All within-cluster pairs remain within-cluster pairs. With
probability1/2 each across-cluster pair becomes a within-
cluster pair; consequently its contribution to the expected
correlation is zero, and soOPT2 ≥ w+ −w−. We now find
that

OPTn + 2OPT2 ≥ w+ − a+ − w− + a− = OPT .

2

As mentioned in the introduction, MAX CORR restricted
to two clusters is a special case of MAX QP. So Lemma 7
shows that a reasonable approximation toOPT2 will pro-
vide a reasonable approximation algorithm for MAX CORR.
This suggests the following algorithm:

ApproxMaxCorr

1. Construct the matrixA thus:
if i < j and pairij is similar thenaij = 1,
if i < j and pairij is dissimilar thenaij = −1;
otherwiseaij = 0.

2. ExecuteApproxMaxQPonA and obtain solutionx.
3. Form partitioningκ2 by assigning itemi to cluster one if

xi = −1 and to cluster two ifxi = 1.
4. CalculateOPTn andcorr(κ2) and return the clustering

with higher correlation.

Lemma 8 ApproxMaxCorrachieves an approximation of
α/(2+α), whereα is the approximation factor ofApprox-
MaxQP.

Proof: It is easy to verify that maximizingxTAx subject to
|xi| = 1 is equivalent to MAX CORR restricted to just two
clusters, both in terms of feasible solutions and objective
values. Clearly,

max{OPTn, corr(κ2)} ≥ t OPTn + (1 − t) corr(κ2)

≥ t OPTn + (1 − t)α OPT2 ,

for all t ∈ [0, 1]. If we let t = α/(2 + α), then

max{OPTn, corr(κ2)} ≥ α

2 + α
OPTn +

2α

2 + α
OPT2

≥ α

2 + α
OPT ,

by Lemma 7. 2

Theorem 1 tells us that the approximation factor ofAp-
proxMaxQPis in Ω(1/ logn), so from Lemma 8 we con-
clude:

Theorem 2 ApproxMaxCorr is an approximation algo-
rithm for MAX CORR with factor inΩ(1/ log n).

Like the MAX QP problem, this approximation factor for
MAX CORR is a long way from the best-known hardness of
approximation result.

Lemma 9 It is NP-hard to approximateMAX CORR within
a factor of43/44 + ε.



Proof: An immediate consequence of our proof of the hard-
ness of approximating MAX AGREE (Theorem 9 in [6]). 2

5. Open problems

Although Bellare and Rogaway [5] prove various
strong inapproximability results for quadratic and poly-
nomial programming, they do not apply to our formu-
lation of MAX QP. The most interesting open problem
suggested by our results is whether a constant factor ap-
proximation for MAX QP is possible. Certainly, it will
not involve the SDP (4), as Alonet al. [1] have re-
cently shown that the integrality gap is inO(1/ log n). In
proving this fact, they work with a variant of the dual char-
acterization discussed in Section 3.2.

It would be interesting to prove hardness results for the
problem of maximizing the gain of MAX CUT (the advan-
tage over a random assignment); the hardness results of
Håstad and Venkatesh [13] do not apply to this problem. In
light of our Ω(log(1/δ)) approximation, obtaining ano(1)
hardness of approximation result would be quite challeng-
ing.

Finally, Grothendieck’s inequality is a fundamental tool
in functional analysis, with several applications. It would
be interesting to investigate whether our extension has any
functional analysis interpretations and consequences.
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