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Abstract thea,; terms are arbitrary real values and are not restricted

to being nonnegative. The goal is to return a solution that

This paper considers the following type of quadratic pro- is at least some fraction of the optimum of (1)OPTgp.
gramming problem. Given an arbitrary matri, whose di-  Our approximation problem is well-defined, fOP T gp is
agonal elements are zero, finds {—1,1}" such that:"Az strictly positive unless! is the zero matrix (see Lemma 4).
is maximized. Our approximation algorithm for this prob- There exists a body of work that has developed approx-
lem uses the canonical semidefinite relaxation and returns ajmation algorithms for maximizing generic quadratic pro-
solution whose ratio to the optimum is@(1/logn). This  grams. However, they use a slightly different definition of
quadratic programming problem can be seen as an exten-apnroximation algorithm [16], partly because they do not
sion to that of maX|_m|z|ng_TAy (wherey’s components are  555ume that the;; values are zero. The difficulty of allow-
also+1). Grothendieck’s inequality states that the ratio of ing negativez;; values is that the ratio between the semidef-

the optimum value of the latter problem to the optimum of jnjte relaxation and the integral optimum could become ar-
its canonical semidefinite relaxation is bounded below by a bitrarily large. Therefore, rather than trying to achieve a

constant. _ _ objective value some fraction of the optimum, their al-
The study of this type of quadratic program arose from a qrithms achieveelative accuracy: if the objective value
desire to approximate the maximum correlation in correla- nat is returnedval, satisfies

tion clustering. Nothing substantive was known about this

problem; we present af(1/logn) approximation, based val — MIN

on our quadratic programming algorithm. MAX — MIN 2 s

We can also guarantee that our quadratic programming

algorithm returns a solution to th1Ax CuT problem that whereMAX (MIN) is the maximum (minimum) value of all

has a significant advantage over a random assignment.  feasible solutions of the quadratic program. Nesterov [16]
presented an SDP-based algorithm with relative accuracy
m/2—1 for quadratic programming. Unfortunately these rel-

1. Introduction ative accuracy algorithms guarantee nothing in terms of the
usual type of approximation factor. For example, axMQ P

In this paper we describe an approximation algorithm instance corresponding to a complete unweightedgM
for a fairly general type of quadratic programming prob- CUT problem hasMAX € O(n), but MIN € —Q(n?),
lem. Given matrixA, with null diagonal entries, maximize ~ @nd So a constaptalgorithm would not even guarantee re-

o turning a positive solution. We note in passing that Nes-
Z Z ajrie;, stz e{-11}foralli, (1) terov [16] descnbgd a/m approximation al.g.orlthm, in the
usual sense, for instances in whidhis positive semidefi-
nite.

Our formulation of MaxQP was partly inspired by a
problem in correlation clustering [3], which we detail be-
low. Alon and Naor [2] provided further inspiration with
their success in approximating theJGNoRM by trying to

i=1 j=1
a problem we call Mx QP. We enforce the;; = 0 condi-

tion because the terms; x; z; are equal ta,;; and so are just
additive constant$ .t is important to note that, foi # j,
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maximize constructed. They showed that there exists one such vec-
m n tor whose projections onto the optimal SDP solution vec-
Z Z aijriyj, Sta,y; € {-1,1}forallij. (2) tors, truncated to lie ifi-1, 1], give a fractional solution no
i=1 j=1 less thari /27 of optimum (see the beginning of Section 2 to
see why a good fractional solution is sufficient). The second
algorithm is simply the random hyperplane split of Goe-
( ) 4 A { 0 A } mans and Williamson, but with a more involved analysis.
z= an = ,

We can cast (2) as an instance of (1) by letting

0 0 (3)  This technique treats the andy variables identically, but
the analysis cannot be applied to our problem because it re-
s0 (2) is nowzZAz. Seeing that Mx QP is an extension of  lies on the ratio oMAX to —MIN being at least some con-
Alon and Naor’s problem, we spend some time detailing the stant. The third algorithm shows that there exist two new
similarities and differences between them. families of vectors{u;} and {v}}, so that the expected
A quadratic program may be used to model a graph op-value of everyz;y; term obtained by splitting the’ and
timization problem in whichu;; represents some property v’ vectors with a random hyperplane is some common con-
of the edge betweenandj. One immediate observation Stant multiple of the corresponding - v; value. These:’
from (3) is that if (2) represents the maximization of a func- andv’ vectors are found by maximizing a semidefinite pro-
tion on abipartite graph, then (1) represents the maximiza- gram. None of these techniques seems to apply directly to
tion of the same function on@mpletegraph. MAXQP, though we adapt some of the ideas.
Alon and Naor’s problem has two key properties that
ours does not. Firstly, different rounding techniques can b

used for the{z;} and the{y; } in (2), and secondly, (2) has Correlation clustering 3], which we also referred to as
MAX = —MIN (simply reblaca/ with —y in one of the ex- clustering with qualitative informatioin earlier work [6],
treme solutions). It turns out that these facts are cruoial t IS @ refatively new problem. We are provided with pairwise
their analysis. judgments of the similarity of. data items. In the simplest

Both (1) and (2) have canonical semidefinite reIaxations,VerSion of the problem there are three possible inputs for
each pair: similar (ak@ositive, dissimilar (akanegative,

respectively, - : ‘ A 4
or no judgment. We refer to an instance in which a judg-
max Zi_’j aij i - V4 ment is given for every pair asomplete otherwise it is a
st wv,-v; =1 foralle (4) generalinstance.
vi €RY, In the original paper of Bansal, Blum and Chawla [3],
and the aim was to partition the items into clusters so that the
number of pairs in agreement with the judgments would
max >, ; aij Ui j be maximized (MXAGREE). A pair is called anagree-
st wi-uy=v;-v; =1 foralli,j (5) mentif it is a positive pair within one cluster or a negative
ui, vy € R pair across two distinct clusters. In like manner, we might

gwant to minimize the number of disagreementsidis-

Unfortunately the term-by-term analysis that Goemans an , : A -
AGREE), where adisagreemenis a positive pair across two

Williamson [10] used in thei®.878 SDP-based approxima- ' ) 2
tion algorithm for Max CuT—which is, in fact, a shifted different clusters or a negative pair in one cIL_Jster. These
special case of Mx QP—fails for both (4) and (5) because two problems are _equwalent from an optlmlzza_t|0n p(_)mt of
some of the terms might be negative. Nevertheless, Megret-V'eW' but rather different from an approximation point of
ski [15] showed that the ratio @PTqp to the optimum of view. For general instances, there exist constant factor al
the SDP relaxation (4) is if2(1/logn).? Grothendieck's gorithms [6, 18]_for NAXAG,REE’ but MINDISAGREEIS as
inequality [11], a key result in functional analysis, sate hard as the minimum multicut problem and (consequently)
that the integrality gap between (5) and (2) is in fact a con- Oy O(log n) algorithms are known [6, 7, 8].

stant. The exact value of this constant is not known, but  Bansal, Blum and Chawla [3] propose the open prob-
Alon and Naor converted proofs of the existence of the con-lem of maximizing thecorrelationin correlation clustering
stant bound [17, 14]—which are also bounds on its size— (MAx CORR). The correlation is the difference between the

into approximation algorithms for (2). number of agreements and the number of disagreements.
Alon and Naor’s first algorithm is deterministic: an ex- Their only observation was that the optimal value of this
plicit set of fourwise independent vectors {r-1,1}" is quantity is always inQ)(n) for a complete instance; no

nontrivial approximation guarantees were known fosk4
2 Our approximation algorithm in Section 2 is an algorithweesion of CORR. Based on our approximation algorithm foraMQP,
Megretski's proof. we obtain an algorithm for Mx CORR.




1.1. Our results

Our algorithm for MaxQP is the first approximation

where eachy; is rounded independently of the others. A
simple calculation shows that, for# j, E[z;z;] = vy,
since then,;; terms are zero, the expected objective value of

algorithm, in the usual sense, for maximizing a generic theintegral solution equals that of the fractional solution.

guadratic program. The algorithm uses a standard semidef-

inite relaxation [10], bears some similarity to the first al-
gorithm of Alon and Naor [2], and has approximation fac-
tor in 2(1/logn). Our rounding procedure does not sim-

So, to the approximation algorithm. We first solve the
semidefinite relaxation (4) of the quadratic program in poly
nomial time, up to arbitrary precision. We will then round
the SDPvectorsolution{v;} to a fractional solutiony. It

ply assign=1 values based on a random hyperplane cut of may be that somg; values fall outside the rande-1, 1];
the vectors, but takes into account the sizes of the projec-if so, we will truncate them ta-1. We show that this hap-
tions of a random vector onto the solution vectors. If nec- pens so rarely that the truncation does not alter the exgpecte

essary, these projections are truncated to lie in[hg 1]
interval; from these truncated values an integral soluigon
obtained using randomized rounding.

A random assignment of items in aAM CuUT instance
will on average result in a cut df/2 of the total weight
of edges. We say that a cut hgain¢ if a 1/2 + ¢ frac-

value of the solution significantly. Finally, we will use the
rounding technique (6) in the previous paragraph to obtain
a{—1, 1} solutionz.

ApproxMaxQP

1. Obtain an optimal solutiofw; } to the SDP (4).

tion of the total weight of edges lie across the cut. The 2. Create vector in which ther; are drawn independently

gain is analogous to the idea of the advantage over a ran-

dom assignment [13]. Our Mx QP algorithm provides an
0(1/1og(1/4)) approximation for the optimal Mx CuT
gaind. Since Max CuT is ashiftedspecial case of Mx QP,

it is not difficult to show that it is NP-hard to obtain an ap-
proximation algorithm for Mix QP with factor higher than
11/13.

The Max CORR problem restricted to two clusters is a
special case of MXxQP, in whicha;; is 1 for each pos-
itive pair ij anda;; is —1 for each negative paifj. We
show that taking the better of the singleton-clusters smiut
and the best two-cluster solution providek/8 approxima-
tion for the general Mx CoRR problem. Therefore, we ob-
tain anQ2(1/log n) approximation for Mux CORR, the first
(nontrivial) approximation algorithm known.

1.2. Organization

We present our approximation algorithm foraMQP in

Section 2. Then in Section 3 we explore the relationship be-

tween Max CuT and quadratic programming, and provide
some further intuition for our approximation algorithm. In

Section 4 we show how our algorithm can be applied to the

MAX CORR problem. Finally, we present some open prob-
lems in Section 5.

2. Maximizing quadratic programs

We start by showing that the optimum value oANIQP,

modified so that the variables are allowed to take any value

in the range[—1, 1], is no larger than that of the original
problem (1). Consider the following randomized rounding
technique for some fractional solutigne [—1, 1]™:

: (6)

—1, with probability 5%
T; = . - _
+1, with probability 142

from the unit Normal distribution.

3. Letz; = wv; - r/T, whereT > 0 will be specified later.
4.If |z] > 1, theny; = z;/|z]|, otherwisey; = z;.

5. Obtainz; from y; using rounding procedure (6).

The solution is clearly in{—1,1}", and it was obtained in
polynomial time, so the remainder of this section will show:

Theorem 1 The ratio of the expected value of the solution
x returned byApproxMaxQPto the maximum value of the

quadratic program(1)is in Q(1/logn), if T = \/4logn.
Lemma 1l The expected value ofz; is v; - vj/TQ.

Proof: Since the distribution of the vector isspherically
symmetricwe can assume thaf = e; andv; = ae; + bes.
Thereforel'z; = v; - r =ry andT'z; = v; - = ary + bra.
Hence

T?E[z;2;] = aE[ri] + bE[r172]
= aVar[r,] + bE[r1|E[ro]

=a="70; Vj.

a

If we were lucky and everyz;| were at mostl, then we
would have d /T2 approximation, since the optimum value
of (4) is at least the optimum of (1). Since this might not
happen, we need to analyze the truncated solujiowe
show that the expected value &f; = z;z; — y;y; is small

in magnitude.

Lemma2 [E[A,]| is less tharse=7"/2,

Proof: Let us consider the expected value|4f;;| on var-
ious regions (ofr). We assume that is sufficiently large
thatT > 1. On the regionS = {r : |z| < 1,]z;| < 1},
Yi = 24 andyj = Zj, SOEs[Aij] =0.

Now, due to rotational symmetry, we may again assume
thatv; = e; andv; = ae; + bes. So the probability that



r lies in the regionB = {r : z; > 1} isPrjr; > T| = Proof:
1 — ®(T), where® is the cdf for the Normal distribution.

Therefore, Z aijYiy;) = Z aijziz5] + B Z a;j(—Aqj)
Epllyiy;[] < Ep[l]=Prlre Bj=1-90(T). (7)
Furthermore, From Lemma 1, we know that the first term of the right hand
) side isOPTspp/T?. The second term is
Ep[T7|ziz]] =
+oo +oo 1
/ / |s(as +bt)|—€_82/2€_t2/2d8 dt. (8) Za” i) Za”
—00 T 2m
Let us consider each term of (8) one at a time,
- ~ > - Z%
/ s2e=5"2ds = —86752/2‘00 + / e /2ds
T T T > = |ai; [[E[A;
= Te T2 4 \2r(1 — ®(T)). Z ! 2
Also,

- o which Lemma 2 proves is greater thage 7" /2 > laigl.
2 2 2
/ |sle™*/%2ds = e~ T /% and / tle™"/2dt = 2. U

T o - The obvious next step is to show that tkisor term is
Putting it all together, we see that insignificant. Recall thaDPTqp stands for the optimum
T b\ _ge value of (1).
Eg[T?|22|] < la] +—)eT/2
ol < (1 4 &

£ Jal(1 - (1)) (9 ~ Lemmad

<Te T2 4 (1-&(T)),
as|al, |b| < 1. SinceT’ > 1, combining (7) and (9), we have

—-T2/2

1
OPT >—~E i
QP_n |aij]

ij

. . . -~ Proof: Consider constructing a random matching oman
Ep[|Ayl] < Epllziz;|+yiy;l] < F2=2M)sorex complete graph in the following way. Select an edge
where the first inequality is merely the triangle inequality ~ uniformly at random, remove the endpoints from the graph,
By symmetry, we will have the same result on the re- and repeat. It is easy to show that the probability of an edge
gion{r : z; < —1}. As there was nothing special abaut  being included in the matchingi¢(n — 1) if n is even and

the same bound also applies for the regi¢ns z; > 1} 1/n if n is odd. Now, if we assign to each edge the weight
and{r : z; < —1}. The union of these four regions is the |a;;|, then there exists some matching on theertices of
complement of the sef. Since the functionA;;| is non-  total weight at leas} _; , |ai;|/n (the expected value under
negative, its expectation d#is less than this random construction).

4 _gep Given a matching, we randomly construct a vecto

7€ +8(1— (1)) (10)  {—1,1}" whose expected QP objective value is the same as

the matching weight. For each edgein the matching, we
independently set; to £1 uniformly at random; we let;
equalz; if and only if a;; is nonnegative. The unmatched

ButEs[A;;]is0, so (10) is a bound oR[|A;|], and hence
on|E[A;;]|. We can bound the second term of (10) by

. B vertex, if n is odd, is assigned a value independently. For
4 temt2dt = 47T /2 L .
- ) each matched paiy we scorga,;|, for every other pair the
720 expected score i8, hence the same total as the matching.
asT > 1. Therefore|E[A ;]| < 8¢~ T /2, O ThereforeOPTqp is at leasty,  ai;|/n.
We now show that we are close to obtaining an ‘ O

Q(1/logn) approximation. LeOPTspp stand for the op-

timum value of (). We can now prove Theorem 1.

Lemma 3 Proof: Substituting Lemma 4 into the statement of
OPTspp Lemma 3, withT" = /4 log n, we see that

_m2
E[) ayyiy;] > T2 8 2N " ay]
5 ]

1 _
E[Z aijyiy;) > OPTQP[410gn —8n~2-n],
5,



which is inQ(OPTqp/ logn). Finally, note that
E[Z aijrix;| = E[E[Z aijrizy |yl = E[Z aijyiyjl.
1,7 1,7 1,7

a

3. Observations
3.1. Therdationship with MAXCuT

Maximizing the gain in the Mx CuT problem can eas-
ily be formulated as a quadratic program. kLetstand for
the total weight of edges in a MKCUT instance and
stand for the gain of the optimal cut—recall that a cut of
sizew(1/2 + §) has gaind. The Goemans-Williamson al-
gorithm guarantees only that its solution will have a cut of
at leastw(0.439 + 0.87845), which may have no gain at all.
Zwick’s outward rotations method [20] or Feige and Lang-
berg’'sRPR? algorithm for LGHTMAX CUT [9] might ap-
proximate the gain well. In fact, our algorithm is an instan-
tiation of Feige and Langberg’s rounding scheme, using an
s-linear function. These authors do not, however, present
any theoretical analysis that applies to our setting.

We can express WX CUT as a special case of quadratic
programming, by setting as follows. For all pairs < j for
which there exists an edge of weight;, leta;; = —w;j;
for all other values of andj, leta;; = 0. For a given solu-
tionz € {—1,1}", the value of the quadratic prograytx),
the value of the cut(x) and the value of its gaig(z), sat-
isfy q(z) = 2k(x) — w = 2w g(x).

Lemmab5 If §* is the optimum gain of aMAXCuUT in-
stance ApproxMaxQPreturns a solution whose gain is in

5*
“ (log ) '

(1/6%)
Proof: Lemma 3 says thakpproxMaxQPwill return a so-
lution z for which ¢(z) is at least
OPTqp
T2
asw is the sum of thea; ;| terms. By definitionOPTqp =

2wd*, so if we setl’ = /32log(1/4*) then it is not hard
to show that (11) is greater than

OPTqp
64 log(1/6*)’
Since the gaing(z), is a constant multiple of(x), the re-
sult follows. O

Just as we have a reduction to obtain an approximation
algorithm for maximizing the gain of a cut, we can also ob-
tain a hardness result for Ak QP from one for Max CUT.

_m2
— 8e T/Qw,

(11)

forall §* <1/2.

Lemma6 It is NP-hard to approximatévlAX QP within
factor11/13 + .

Proof: Let o now stand for the hardness factor foral-
CuUT. SinceOPTgp = 20PT ¢yt — w, distinguishing be-
tween the case@PTcyt > k£ andOPT ¢yt < ak is equiv-
alent to distinguishing betwee@PTqp > 2k — w and
OPTqp < 2ak — w. The ratio of these two bounds on
OPTqp is

20k — w a—1

2k —w 2k —w '’
The lemma follows from thé6 /17 + ¢ hardness result for
MAxCuT [12, 19], which holds fok = 17w/21. O

=a+w

3.2. Correlated random variables and distribu-
tionson cuts

We make some general observations about rounding so-
lutions to the Max QP SDP relaxation and point out some
interesting connections to generatifigl, 1} random vari-
ables with given correlations. The value of the SDP solution
is >, ; aijv; - vj. Suppose we could generdte 1,1} ran-
dom variablesX; such thatE[X;X;] = Cuv; - v; for all
1, j; this would immediately lead to &-approximation al-
gorithm. In fact, Alon and Naor’s third algorithm (based on
Krivine’s proof) is exactly of this form: they transform the
vectorsu;, v; to obtain new vectors;, v; and apply random
hyperplane rounding to these new vectors to get a distribu-
tion on{—1, 1} random variables with the desired property.
We reiterate that, in doing this, they crucially use the fact
that they can apply one transformation for the } and a
another one for th¢v; }; hence this technique does not ap-
ply to rounding Max QP.

One might wonder whether the existence of an appropri-
ate distribution o{—1, 1} random variables is a lucky co-
incidence. In fact we demonstrate (the possibly surprising
fact) that such a distribution always exists.

In order to do this, we write an LP formulation for the
maximum gap of the SDP forfaxedvector solution. Given
a set of vectore; produced by an optimal SDP solution,
consider the problem of finding thé matrix that maxi-
mizes the gap betweddPTspp andOPTqp. The problem
can be formulated as an LP as follows (note thatifere

variables here).
min ¢
st ) aivi-v =1
Zij aij ey <c forallz e {—1,1}"

The accompanying dual program, below, has ppevari-
able for every possible setting ofe {—1,1}".

max b

st. Y, p.=1
Y owPa iy = b - v;

Thesep,. values specify a probability distribution on thgs.
We know that the primal LP has optimal value no lower

forall i, j



than the gap of the SDP for Mk QP. By duality, there ex-
ists a distribution on{—1,1} random variables such that
E[z;z;] = bv; - v;, whereb, which could be a function of
n, is at least the worst case gap of the SDP fordP.

Our analysis in Section 2 shows that the gap of the
MAXxQP SDP is in2(1/logn), which has the following
interesting interpretation. Given a positive semidefinite-
trix K, it is well known that there exist correlated normal
random variablesX; such thatE[X;X;] = k;;. What if
you wanted{—1, 1} random variables instead? Our results
show that if we scale the (off-diagonal) entries of the cor-

All within-cluster pairs remain within-cluster pairs. Wit

probability 1/2 each across-cluster pair becomes a within-
cluster pair; consequently its contribution to the expecte
correlation is zero, and YPTy > wy —w_. We now find
that

OPT, +20PTe > wy —ay —w—_ +a_ = OPT.

O

As mentioned in the introduction, Mk CORR restricted

to two clusters is a special case ofAMQP. So Lemma 7
shows that a reasonable approximatiorOteT, will pro-

relation matrix byC' € O(1/logn), then we can guarantee vide a reasonable approximation algorithm foAMCORR.

the existence of —1, 1} random variables with the appro-
priate correlations.

4. Maximizing correlation in correlation clus-
tering

We now turn to the correlation clustering application. A
series of papers [3, 4, 7, 8, 6, 18] resolved many of the is-
sues related to the Mk AGREE and MINDISAGREE prob-
lems. Recall that in the X CORR problem the aim is to

maximize the difference between the number of agreements

and disagreements. Until now, no nontrivial approximation
algorithm was known for Mx CORR, but we demonstrate
that the2(1/ log n) approximation for M\x QP can be used
to obtain an algorithm with the same asymptotic factor for
MAX CORR.

Let corr(x) stand for the correlation of clustering.
There is only one way of placing each item into a singleton
cluster: call this clustering,, and letOPT,, = corr(ky,).

In contrast, there are several ways of splitting the itertes in
two clusters, but we lek9PT stand for one of those with
maximal correlatioOPT,. Finally, x°T is some partition-
ing that has maximum correlatigPT.

Lemma?7

OPT,, +20PT, > OPT .

Proof: Let the four quantitiesw, a4, w— anda_, stand
for the numbers of positive (negative) pairs within (acjoss
clusters in oupptimalsolutionx°PT. By definition,

OPT=wy —ay —w—+a_.
If we split everything up into singletons, we see that
OPT,, = —-wy —ay +w_+a_ .

Although we cannot calculatePT,, we can at least pro-
vide a lower bound for it. Consider constructing a partition
ing by randomly assigning eadfusterin °"T to one of

two new superclusters. The expected correlation of the re-
sult of this random procedure is a lower bound &P T,.

This suggests the following algorithm:

ApproxMaxCorr

1. Construct the matrid thus:
if ¢ < j and pairij is similar therma;; = 1,
if ¢ < j and pairij is dissimilar theru;; =
otherwisen;; = 0.

2. ExecuteApproxMaxQFRon A and obtain solution:.

3. Form partitioning<o by assigning item to cluster one if
z; = —1 and to cluster two if;; = 1.

4. CalculateOPT,, andcorr(k2) and return the clustering

with higher correlation.

Lemma 8 ApproxMaxCorrachieves an approximation of
a/(2+ «), wherex is the approximation factor oApprox-
MaxQP.

Proof: It is easy to verify that maximizing”Az subject to
|x;| = 1is equivalent to M\x CORR restricted to just two
clusters, both in terms of feasible solutions and objective

values. Clearly,

max{OPT,, corr(k2)} >t OPT, + (1 —t) corr(kz)
> tOPT, + (1 —t)aOPT,,

forall¢ € [0,1]. Ifwe lett = /(2 + «), then

2
max{OPT,,, corr(r2)} > 5—— j_‘ —OPT, + 3—— faOPTQ
>_2 opT,
+ o

by Lemma 7. O
Theorem 1 tells us that the approximation factoApf
proxMaxQPis in ©(1/logn), so from Lemma 8 we con-

clude:

Theorem 2 ApproxMaxCorris an approximation algo-
rithm for MAX CorRR with factor inQ2(1/logn).

Like the Max QP problem, this approximation factor for
MAX CORRis a long way from the best-known hardness of
approximation result.

Lemma9 Itis NP-hard to approximat& Ax CORR within
afactor of43/44 + ¢.



Proof: Animmediate consequence of our proof of the hard-
ness of approximating MXx AGREE(Theorem 9 in [6]). O

5. Open problems

Although Bellare and Rogaway [5] prove various
strong inapproximability results for quadratic and poly-
nomial programming, they do not apply to our formu-

(7]
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(9]

lation of MAXQP. The most interesting open problem [10]

suggested by our results is whether a constant factor ap-
proximation for MaxQP is possible. Certainly, it will
not involve the SDP (4), as Alort al. [1] have re-
cently shown that the integrality gap is @(1/logn). In
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