
Internet Mathematics Vol. 1, No. 4: 385-408

Graph Clustering
and Minimum Cut Trees
Gary William Flake, Robert E. Tarjan, and Kostas Tsioutsiouliklis

Abstract. In this paper, we introduce simple graph clustering methods based on

minimum cuts within the graph. The clustering methods are general enough to apply

to any kind of graph but are well suited for graphs where the link structure implies a

notion of reference, similarity, or endorsement, such as web and citation graphs. We

show that the quality of the produced clusters is bounded by strong minimum cut and

expansion criteria. We also develop a framework for hierarchical clustering and present

applications to real-world data. We conclude that the clustering algorithms satisfy

strong theoretical criteria and perform well in practice.

1. Introduction

Clustering data sets into disjoint groups is a problem arising in many domains.

From a general point of view, the goal of clustering is to find groups that are

both homogeneous and well separated, that is, entities within the same group

should be similar and entities in different groups dissimilar. Often, data sets can

be represented as weighted graphs, where nodes correspond to the entities to be

clustered and edges correspond to a similarity measure between those entities.

The problem of graph clustering is well studied and the literature on the

subject is very rich [Everitt 80, Jain and Dubes 88, Kannan et al. 00]. The best

known graph clustering algorithms attempt to optimize specific criteria such

as k-median, minimum sum, minimum diameter, etc. [Bern and Eppstein 96].

Other algorithms are application-specific and take advantage of the underlying

structure or other known characteristics of the data. Examples are clustering

© A K Peters, Ltd.
1542-7951/04 $0.50 per page 385

386 Internet Mathematics

algorithms for images [Wu and Leahy 93] and program modules [Mancoridis et

al. 98].

In this paper, we present a new clustering algorithm that is based on maximum

flow techniques, and in particular minimum cut trees. Maximum flow algorithms

are relatively fast and simple, and have been used in the past for data-clustering

(e.g., [Wu and Leahy 93], [Flake et al. 00]). The main idea behind maximum flow

(or equivalently, minimum cut [Ford and Fulkerson 62]) clustering techniques, is

to create clusters that have small intercluster cuts (i.e., between clusters) and

relatively large intracluster cuts (i.e., within clusters). This guarantees strong

connectedness within the clusters and is also a strong criterion for a good clus-

tering, in general.

Our clustering algorithm is based on inserting an artificial sink into a graph

that gets connected to all nodes in the network. Maximum flows are then calcu-

lated between all nodes of the network and the artificial sink. A similar approach

has been introduced in [Flake et al. 00], which was also the motivation for our

work. In this paper we analyze the minimum cuts produced, calculate the quality

of the clusters produced in terms of expansion-like criteria, generalize the cluster-

ing algorithm into a hierarchical clustering technique, and apply it to real-world

data.

This paper consists of six sections. In Section 2, we review basic definitions

necessary for the rest of the paper. In Section 3, we focus on the previous work

of Flake et al. [Flake et al. 00], and then describe our cut-clustering algorithm

and analyze it in terms of upper and lower bounds. In Section 4, we generalize

the method of Section 3 by defining a hierarchical clustering method. In Section

5, we present results of our method applied to three real-world problem sets and

see how the algorithm performs in practice. The paper ends with Section 6,

which contains a summary of our results and final remarks.

2. Basic Definitions and Notation

2.1. Minimum Cut Tree

Throughout this paper, we represent the web (or a subset of the web) as a

directed graph G(V,E), with |V | = n vertices, and |E| = m edges. Each vertex

corresponds to a web page, and each directed edge to a hyperlink. The graph

may be weighted, in which case we associate a real valued function w with

an edge, and say, for example, that edge e = (u, v) has weight (or capacity)

w(e) = w(u, v). Also, we assume that G is connected; if that is not the case

one can work on each connected component independently and the results still

apply.

Flake et al.: Graph Clustering and Minimum Cut Trees 387

Two subsets A and B of V , such that A∪B = V and A∩B = ∅, define a cut
in G, which we denote as (A,B). The sum of the weights of the edges crossing

the cut defines its value. We use a real function c to represent the value of a cut.

So, cut (A,B) has value c(A,B). In fact, function c can also be applied when A

and B do not cover V , but A ∪B ⊂ V .
Our algorithms are based on minimum cut trees, which were defined in [Go-

mory and Hu 61]. For graph G, there exists a weighted graph TG, which we

call the minimum cut tree (or simply, min-cut tree) of G. The min-cut tree is

defined over V and has the property that we can find the minimum cut between

two nodes s, t in G by inspecting the path that connects s and t in TG. The

edge of minimum capacity on that path corresponds to the minimum cut. The

capacity of the edge is equal to the minimum cut value, and its removal yields

two sets of nodes in TG, but also in G, which correspond to the two sides of the

cut. For every undirected graph, there always exists a min-cut tree. Gomory

and Hu [Gomory and Hu 61] describe min-cut trees in more detail and provide

an algorithm for calculating min-cut trees.

2.2. Expansion and Conductance

In this subsection, we discuss a small number of clustering criteria and compare

and contrast them to one another. We initially focus on two related measures of

intracluster quality and then briefly relate these measures to intercluster quality.

Let (S, S̄) be a cut in G. We define the expansion of a cut as [Kannan et al.

00]:

ψ(S) =
u∈S,v∈S̄ w(u, v)

min{|S|, |S̄|} ,

where w(u, v) is the weight of edge (u, v). The expansion of a (sub)graph is

the minimum expansion over all the cuts of the (sub)graph. The quality of a

clustering can be measured in terms of expansion: the expansion of a clustering

of G is the minimum expansion over all its clusters. The larger the expansion

of the clustering, the higher its quality. One way to think about the expansion

of a clustering is that it serves as a strict lower bound for the expansion of any

intracluster cut for a graph.

We can also define conductance, which is similar to expansion except that it

weights cuts inversely by a function of edge weight instead of the number of

vertices in a cut set. For the cut (S, S̄) in G, conductance is defined as [Kannan

et al. 00]:

φ(S) =
u∈S,v∈S̄ w(u, v)

min{c(S), c(S̄)} ,

388 Internet Mathematics

where c(S) = c(S, V) = u∈S v∈V w(u, v). As with expansion, the conduc-
tance of a graph is the minimum conductance over all the cuts of the graph. For

a clustering of G, let C ⊆ V be a cluster and (S,C − S) a cluster within C,
where S ⊆ C. The conductance of S in C is [Kannan et al. 00]:

φ(S,C) =
u∈S,v∈C−S w(u, v)

min{c(S), c(C − S)} .

The conductance of a cluster φ(C) is the smallest conductance of a cut within

the cluster; for a clustering the conductance is the minimum conductance of its

clusters. Thus, the conductance of a clustering acts as a strict lower bound on

the conductance of any intracluster cut.

Both expansion and conductance seem to give very good measures of quality

for clusterings and are claimed in [Kannan et al. 00] to be generally better than

simple minimum cuts. The main difference between expansion and conductance

is that expansion treats all nodes as equally important while conductance gives

greater importance to nodes with high degree and adjacent edge weight.

However, both expansion and conductance are insufficient by themselves as

clustering criteria because neither enforces qualities pertaining to intercluster

weight, nor the relative size of clusters. Moreover, there are difficulties in directly

optimizing either expansion or conductance because both are computationally

hard to calculate, usually raising problems that are NP-hard, since they each

have an immediate relation to the sparsest cut problem. Hence, approximations

must be employed.

With respect to the issue of simultaneously optimizing both intra- and inter-

cluster criteria, Kannan et al. [Kannan et al. 00] have proposed a bicriteria

optimization problem that requires:

1. clusters must have some minimum conductance (or expansion) α, and

2. the sum of the edge weights between clusters must not exceed some maxi-

mum fraction of the sum of the weights of all edges in G.

The algorithm that we are going to present has a similar bicriterion. It provides

a lower bound on the expansion of the produced clusters and an upper bound

on the edge weights between each cluster and the rest of the graph.

3. Cut-Clustering Algorithm

3.1. Background and Related Work

In this section we present our basic clustering algorithm, which we call cut-

clustering algorithm. The analysis of the cut-clustering algorithm is based on

Flake et al.: Graph Clustering and Minimum Cut Trees 389

minimum cut trees. While flows and cuts are well defined for both directed and

undirected graphs, minimum cut trees are defined only for undirected graphs.

Therefore, we restrict, for now, the domain to undirected graphs. In Section 5,

we will address the issue of edge direction and how we deal with it.

Let G(V,E) be an undirected graph, and let s, t ∈ V be two nodes of G. Let

(S, T) be the minimum cut between s and t, where s ∈ S and t ∈ T . We define
S to be the community of s in G with respect to t. If the minimum cut between

s and t is not unique, we choose the minimum cut that minimizes the size of S.

In that case, it can be shown that S is unique [Gomory and Hu 61].

The work presented in this paper was motivated by the paper of Flake et al.

[Flake et al. 00]. There, a web community is defined in terms of connectivity. In

particular, a web community S is defined as a collection of nodes that has the

property that all nodes of the web community predominantly link to other web

community nodes. That is,

v∈S
w(u, v) >

v∈S̄
w(u, v),∀u ∈ S. (3.1)

We briefly establish a connection between our definition of a community and

web communities from [Flake et al. 00]. The following lemma applies:

Lemma 3.1. For an undirected graph G(V,E), let S be a community of s with

respect to t. Then,

v∈S
w(u, v) >

v∈S̄
w(u, v),∀u ∈ S − {s}. (3.2)

Proof. Since S is a community of s with respect to t, the cut (S, V − S) is a
minimum cut for s and t in G. Thus, every node w ∈ S − {s} has more edge
weight to the nodes of S than to the nodes of V −S; otherwise, moving w to the
other side of the cut (S, T) would yield a smaller cut between s and t.

Lemma 3.1 shows that a community S based on minimum cuts is also a web

community. The only node to possibly violate the web community property is the

source s itself. In that case, it is usually a good indication that the community

of s should actually be a larger community that contains S as a subset. At this

point we should also point out the inherent difficulty of finding web communities

with the following theorem:

Theorem 3.2. Let G(V,E) be a graph and k > 1 an integer. The problem of

partitioning G into k web communities is NP-complete.

390 Internet Mathematics

Proof. The proof is given in Section 7. (Note that k can be at most n/2, since no
single node can form a community by itself. Also, k > 1, since for k = 1, the set

of all nodes forms a trivial community.)

3.2. Cut-Clustering Algorithm

At this point we extend the definition of a community S of s, when no t is given.

To do this, we introduce an artificial node t, which we call the artificial sink. The

artificial sink is connected to all nodes of G via an undirected edge of capacity α.

We can now consider the community S of s as defined before, but with respect

to the artificial sink, t. We can now show our main theorem:

Theorem 3.3. Let G(V,E) be an undirected graph, s ∈ V a source, and connect an

artificial sink t with edges of capacity α to all nodes. Let S be the community

of s with respect to t. For any nonempty P and Q, such that P ∪ Q = S and

P ∩Q = ∅, the following bounds always hold:
c(S, V − S)
|V − S| ≤ α ≤ c(P,Q)

min(|P |, |Q|) . (3.3)

Theorem 3.3 shows that α serves as an upper bound of the intercommunity

edge capacity and a lower bound of the intracommunity edge capacity. In Sec-

tion 2.2, we saw that the expansion for a subset S of V is defined as the minimum

value of φ(S) =
c(P,Q)

min(|P |,|Q|) , for all cuts (P,Q) of S. Thus, a community of G
with respect to the artificial sink will have expansion at least α. The left side

of inequality (3.3) bounds the intercommunity edge capacity, thus guaranteeing

that communities will be relatively disconnected. Thus, α can be used to control

the trade-off between the two criteria. We will discuss the choice of α and how

it affects the community more extensively in Section 3.3.

To prove Theorem 3.3 we prove a series of lemmata. But first we define Gα to

be the expanded graph of G, after the artificial sink t is connected to all nodes V

with weight α.

Lemma 3.4. Let s, t ∈ V be two nodes of G and let S be the community of s with

respect to t. Then, there exists a min-cut tree TG of G, and an edge (a, b) ∈ TG,
such that the removal of (a, b) yields S and V − S.

Note that the issue raised in this lemma is that there may be multiple min-cut

trees for G. Despite this fact, there always exists at least one min-cut tree TG,

for which the removal of an edge of TG yields exactly S and V − S.

Flake et al.: Graph Clustering and Minimum Cut Trees 391

Proof. Gomory and Hu prove the existence of a min-cut tree for any undirected
graph G by construction. Their proof starts off with an arbitrary pair of nodes

a, b, finds a minimum cut (A,B) between a and b, and constructs the min-cut

tree recursively. The resulting min-cut tree contains (a, b) as an edge. To prove

the lemma, it suffices to pick a = s, b = t, and the minimum cut (S, V − S) as
starting points.

Lemma 3.5. Let TG be a min-cut tree of a graph G(V,E), and let (u,w) be an edge
of TG. Edge (u,w) yields the cut (U,W) in G, with u ∈ U , w ∈ W . Now, take
any cut (U1, U2) of U , so that U1 and U2 are nonempty, u ∈ U1, U1 ∪ U2 = U ,
and U1 ∩ U2 = ∅. Then,

c(W,U2) ≤ c(U1, U2). (3.4)

Note that this lemma defines a type of triangle inequality for flows and cuts

that will be frequently used in the proofs that follow.

Proof. Since (u,w) is an edge of TG, it defines a minimum cut (U,W) between u

and w in G. Now consider the cut (U1,W ∪ U2). Since u ∈ U1 and w ∈ W , the
cut (U1,W ∪ U2) is also a cut between u and w, but not necessarily minimum.
Hence, we can write

c(U,W) ≤ c(U1,W ∪ U2), (3.5)

c(U1 ∪ U2,W) ≤ c(U1,W ∪ U2), (3.6)

c(U1,W) + c(U2,W) ≤ c(U1,W) + c(U1, U2), (3.7)

c(U2,W) ≤ c(U1, U2). (3.8)

Lemma 3.6. Let Gα be the expanded graph of G, and let S be the community of
s with respect to the artificial sink t. For any nonempty P and Q, such that

P ∪Q = S and P ∩Q = ∅, the following bound always holds:

α ≤ c(P,Q)

min(|P |, |Q|). (3.9)

Proof. Let TGα be a minimum cut tree of Gα, and let (s , t) be an edge of TGα
whose removal yields S and V −S ∪ {t} in Gα. According to Lemma 3.4, such a
TGα exists, and by the definition of a min-cut tree, (s , t) lies on the path from

s to t in TGα . (See Figure 1.)

392 Internet Mathematics

Figure 1. Min-cut tree TGα with emphasis on the (s,t)-path. Triangles correspond
to subtrees that are not part of the path.

Now, we split S into two subsets P and Q, and assume w.l.o.g. that s ∈ P .
Then, Lemma 3.5 applies and yields

c(V − S ∪ {t}, Q) ≤ c(P,Q), (3.10)

c(V − S,Q) + c({t}, Q) ≤ c(P,Q), (3.11)

c({t}, Q) ≤ c(P,Q), (3.12)

α|Q| ≤ c(P,Q), (3.13)

α ·min(|P |, |Q|) ≤ c(P,Q). (3.14)

Inequality (3.13) is true because t is connected to every node in V with an edge

of weight α, and inequality (3.14) implies the lemma.

Lemma 3.7. Let Gα be the expanded graph of G(V,E) and let S be the community
of s with respect to the artificial sink t. Then, the following bound always holds:

c(S, V − S)
|V − S| ≤ α. (3.15)

Proof. As in the previous lemma, let TGα be a minimum cut tree of Gα that

contains an edge (s , t), the removal of which yields sets S and V − S ∪ {t}. By
the definition of a min-cut tree, (s , t) corresponds to a minimum cut between

s and t in Gα. The value of this minimum cut is equal to c(S, V − S ∪ {t}).
Now, consider the cut (V, {t}) in Gα. It also separates s from t, but is not

necessarily a minimum cut between them. This means

c(S, V − S ∪ {t}) ≤ c(V, {t}), (3.16)

c(S, V − S) + c(S, {t}) ≤ c(V − S, {t}) + c(S, {t}), (3.17)

c(S, V − S) ≤ c(V − S, {t}), (3.18)

c(S, V − S) ≤ α|V − S|. (3.19)

The last inequality implies the lemma and follows from the fact that t is con-

nected to all nodes of the graph by an edge of weight α.

Flake et al.: Graph Clustering and Minimum Cut Trees 393

Now we can prove Theorem 3.3.

Proof. Immediate by combination of Lemmata 3.6 and 3.7.

We can use the above ideas to either find high-quality communities in G, or to

develop a general clustering algorithm based on the min-cut tree of G. Figure 2

shows the cut-clustering algorithm. The idea is to expand G to Gα, find the

min-cut tree TGα , remove the artificial sink t from the min-cut tree, and the

resulting connected components form the clusters of G.

CutClustering Algorithm(G(V,E),α)
Let V = V ∪ t
For all nodes v ∈ V

Connect t to v with edge of weight α

Let G (V ,E) be the expanded graph after connecting t to V

Calculate the minimum-cut tree T of G

Remove t from T

Return all connected components as the clusters of G

Figure 2. Cut-clustering algorithm.

So, Theorem 3.3 applies to all clusters produced by the cut-clustering algo-

rithm, giving lower bounds on their expansion and upper bounds on the inter-

cluster connectivity.

3.3. Choosing α

We have seen that the value of α in the expanded graph Gα plays a crucial role

in the quality of the produced clusters. But how does it relate to the number

and sizes of clusters, and what is a good choice for α?

It is easy to see that as α goes to 0, the min-cut between t and any other node

v of G will be the trivial cut ({t}, V), which isolates t from the rest of the nodes.

So, the cut-clustering algorithm will produce only one cluster, namely the entire

graph G, as long as G is connected. On the other extreme, as α goes to infinity

it will cause TGα to become a star with the artificial sink at its center. Thus,

the clustering algorithm will produce n trivial clusters, all singletons.

For values of α between these two extremes the number of clusters will be

between 1 and n, but the exact value depends on the structure of G and the

distribution of the weights over the edges. What is important, though, is that

as α increases the number of clusters is nondecreasing. When implementing

our algorithm we often need to apply a binary search—like approach in order to

determine the best value for α, or we can make use of the nesting property of

min-cuts.

394 Internet Mathematics

The nesting property of min-cuts has been used by Gallo et al. [Gallo et al.

89] in the context of parametric maximum flow algorithms. A parametric graph

is defined as a regular graph G with source s and sink t, with edge weights being

linear functions of a parameter λ, as follows:

1. wλ(s, v) is a nondecreasing function of λ for all v = t.

2. wλ(v, t) is a nonincreasing function of λ for all v = s.

3. wλ(v, w) is constant for all v = s, w = t.

A maximum flow (or minimum cut) in the parametric graph G corresponds

to a maximum flow (or minimum cut) in G for some particular value of λ. One

can immediately see that the parametric graph is a generalized version of our

expanded graph Gα, since the edges adjacent to the artificial sink are a linear

function of α, and no other edges in Gα are parametric. We can use both

nondecreasing and nonincreasing values for α, since t can be treated as either

the sink or the source in Gα.

The following nesting property lemma holds for Gα:

Lemma 3.8. For a source s in Gαi, where αi ∈ {α1, ...,αmax}, such that α1 < α2 <

... < αmax, the communities S1, ..., Smax are such that S1 ⊆ S2 ⊆ ... ⊆ Smax,
where Si is the community of s with respect to t in Gai.

Proof. This is a direct result of a similar lemma in [Gallo et al. 89].

In fact, in [Gallo et al. 89] it has been shown that for a given s the total

number of different communities Si is no more than n − 2 regardless of the
number of ai and they can all be computed in time proportional to a single

max-flow computation, by using a variation of the Goldberg-Tarjan preflow-push

algorithm [Goldberg and Tarjan 88].

Thus, if we want to find a cluster of s in G of certain size or other characteristic

we can simply use this methodology, find all clusters fast, and then choose the

best clustering according to a metric of our choice. Also, because the parametric

preflow algorithm in [Gallo et al. 89] finds all clusters either in increasing or

decreasing order, we can stop the algorithm as soon as a desired cluster has been

found. We will use the nesting property again, in Section 4, when describing the

hierarchical cut-clustering algorithm.

3.4. Heuristic for the Cut-Clustering Algorithm

The running time of the basic cut-clustering algorithm is equal to the time to

calculate the minimum cut tree, plus a small overhead for extracting the subtrees

Flake et al.: Graph Clustering and Minimum Cut Trees 395

under t. But calculating the min-cut tree can be equivalent to computing n− 1
maximum flows [Gomory and Hu 61], in the worst case. Therefore, we use a

heuristic that, in practice, finds the clusters of G much faster, usually in time

proportional to the total number of clusters.

Lemma 3.9. Let v1, v2 ∈ V , and S1, S2 be their communities with respect to t in
Gα. Then either S1 and S2 are disjoint or one is a subset of the other.

Proof. This is a special case of a more general lemma in [Gomory and Hu 61].
If S1 and S2 overlap without one containing the other, then either S1 ∩ S2 or
S1−S2 is a smaller community for v1, or symmetrically, either S1∩S2 or S2−S1
is a smaller community for v2. Thus S1 and S2 are disjoint or one is a subset of

the other.

A closer look at the cut-clustering algorithm shows that it suffices to find the

minimum cuts that correspond to edges adjacent to t in TGα . So, instead of

calculating the entire min-cut tree of Gα, we use Lemma 3.9 in order to reduce

the number of minimum cut computations necessary. If the cut between some

node v and t yields the community S, then we do not use any of the nodes in S as

subsequent sources to find minimum cuts with t, since according to the previous

lemma they cannot produce larger communities. Instead, we mark them as being

in community S, and later if S becomes part of a larger community S we mark

all nodes of S as being part of S . Obviously, the cut-clustering algorithm finds

the largest communities between t and all nodes in V .

The heuristic relies on the choice of the next node for which we find its mini-

mum cut with respect to t. The larger the next cluster, the smaller the number

of minimum cut calculations. Prior to any min-cut calculations, we sort all

nodes according to the sum of the weights of their adjacent edges, in decreasing

order. Each time, we compute the minimum cut between the next unmarked

node and t. We have seen, in practice, that this reduces the number of max-flow

computations almost to the number of clusters in G, speeding up the algorithm

significantly.

4. Hierarchical Cut-Clustering Algorithm

We have seen that the cut-clustering algorithm produces a clustering of the nodes

of G for a certain value α. Once such a clustering is produced, we can contract

the clusters into single nodes and apply the same algorithm to the resulting

graph. When contracting a set of nodes, they get replaced by a single new node;

396 Internet Mathematics

possible loops get deleted and parallel edges are combined into a single edge with

weight equal to the sum of their weights.

When applying the cut-clustering algorithm on the contracted graph, we sim-

ply choose a new α-value, and the new clustering, now, corresponds to a clus-

tering of the clusters of G. By repeating the same process a number of times,

we can build a hierarchy of clusters. Notice that the new α has to be of smaller

value than the last, for otherwise the new clustering will be the same, since all

contracted nodes will form singleton clusters.

The quality of the clusters at each level of the hierarchy is the same as for

the initial basic algorithm, depending each time on the value of α, however

the expansion measure is now over the clusters instead of over the nodes. The

iterative cut-clustering algorithm stops either when the clusters are of a desired

number and/or size, or when only a single cluster that contains all nodes is

identified. The hierarchical cut-clustering algorithm is described in Figure 3.

Hierarchical CutClustering(G(V,E))
Let G0 = G

For (i = 0; ; i++)

Set new, smaller value αi /* possibly parametric */

Call CutCluster Basic(Gi, αi)

If ((clusters returned are of desired number and size) or

(clustering failed to create nontrivial clusters))

break

Contract clusters to produce Gi+1

Return all clusters at all levels

Figure 3. Hierarchical cut-clustering algorithm.

The hierarchical cut-clustering algorithm provides a means of looking at graph

G in a more structured, multilevel way. We have used this algorithm in our

experiments to find clusters at different levels of locality. Figure 4 shows what

a hierarchical tree of clusters looks like. At the lower levels α is large and the

clusters are small and dense. At higher levels, the clusters are larger in size and

sparser. Also notice that the clusters at higher levels are always supersets of

clusters at lower levels. This is expressed in the following lemma, the proof of

which follows directly from the nesting property.

Lemma 4.1. Let α1 > α2 > ... > αmax be a sequence of parameter values that

connect t to V in Gai. Let αmax+1 ≤ αmax be small enough to yield a single

cluster in G and α0 ≥ α1 be large enough to yield all singletons. Then all αi+1

values, for 0 ≤ i ≤ max, yield clusters in G that are supersets of the clusters

Flake et al.: Graph Clustering and Minimum Cut Trees 397

Figure 4. Hierarchical tree of clusters.

produced by each αi, and all clusterings together form a hierarchical tree over the

clusterings of G.

5. Experimental Results

5.1. CiteSeer

CiteSeer [CiteSeer 97] is a digital library for scientific literature. Scientific liter-

ature can be viewed as a graph, where the documents correspond to the nodes

and the citations between documents to the edges that connect them. The

cut-clustering algorithms require the graph to be undirected, but citations, like

hyperlinks, are directed. In order to transform the directed graph into undi-

rected, we normalize over all outbound edges for each node (so that the total

sums to unity), remove edge-directions, and combine parallel edges. Parallel

edges resulting from two directed edges are resolved by summing the combined

weight.

Our normalization is similar to the first iteration of HITS [Kleinberg 98] and

to PageRank [Brin and Page 98] in that each node distributes a constant amount

of weight over its outbound edges. The fewer pages to which a node points, the

more influence it can pass to the neighbors to whom it points.

Our experiments were performed on a large subset of CiteSeer that consisted

of 132,210 documents and 461,170 citations. After the graph was normalized, we

applied the hierarchical cut-clustering algorithm of Figure 3. We started with

the largest possible value of α that gave nontrivial clusters (not all singletons).

Then we contracted those clusters, producing the graph of the next level. We

clustered again with the largest possible value of α. These are the clusters of

the second level and correspond to clusters of clusters of nodes. We repeated the

process until we had only one cluster, containing the entire set of nodes.

398 Internet Mathematics

By looking at the resulting clusters, we concluded that at lower levels the

clusters contain nodes that correspond to documents with very specific content.

For example, there are small clusters (usually with fewer than ten nodes) that

focus on topics like “LogP Model of Parallel Computation,” “Wavelets and Dig-

ital Image Compression,” “Low Power CMOS,” “Nonholonomic Motion Plan-

ning,” “Bayesian Interpolation,” and thousands of others. Table 1 shows the

titles of three documents of each of the clusters just mentioned. For each clus-

ter, these three documents are, respectively, the heaviest, median, and lightest

linked within their clusters. We can see that the documents are closely related

to each other. This was the case in all clusters of the lowest level.

LogP Model of Parallel Computation

LogP: Towards a Realistic Model of Parallel Computation

A Realistic Cost Model for the Communication Time in Parallel Programs

LogP Modelling of List Algorithms

Wavelets and Digital Image Compression

An Overview of Wavelet-Based Multiresolution Analyses

Wavelet-Based Image Compression

Wavelets and Digital Image Compression Part I & II

Low Power CMOS

Low Power CMOS Digital Design

Power-Time Tradeoffs in Digital Filter Design and Implementation

Input Synchronization in Low Power CMOS Arithmetic Circuit Design

Nonholonomic Motion Planning

Nonholonomic Motion Planning: Steering Using Sinusoids

Nonholomobile Robot Manual

On Motion Planning of Nonholonomic Mobile Robots

Bayesian Interpolation

Bayesian Interpolation

Benchmarking Bayesian Neural Networks for Time Series Forecasting

Bayesian Linear Regression

Table 1. CiteSeer data–example titles are from the highest, median, and lowest

ranking papers within a community, thus demonstrating that the communities

are topically focused.

For clusters of higher levels, we notice that they combine clusters of lower

levels and singletons that have not yet been clustered with other nodes. The

clusters of these levels (after approximately ten iterations) focus on more general

topics, like “Concurrent Neural Networks,” “Software Engineering, Verification,

Validation,” “DNA and Bio Computing,” “Encryption,” etc.

At the highest levels, the clusters become quite general, with broad topics

covering entire areas, like “Networks,” “Databases,” and “Programming Lan-

Flake et al.: Graph Clustering and Minimum Cut Trees 399

algorithm

problem
learning
image

processors
execution
distributed
memory
parallel network

service
internet
security
traffic

logic
programming
software

learning
image
neural
recognition
knowledge

nonlinear
matrix
linear
equations
numerical

wavelets
coding
transform

constraint

satisfaction

bayesian

monte carlo

markov

34353
20593 15415

2386

2377

linear language
semantics

constraint satisfaction

36986

8179

3650

61837

Figure 5. Top-level clusters of CiteSeer. The sizes of each cluster are shown, as
well as the top features for each cluster.

guages.” Figure 5 shows the highest nontrivial level, consisting of four clusters.

In order to better validate our results, for each cluster, we have extracted text

features (i.e., uni-grams and bi-grams) from the title and abstract of the papers.

For each feature we calculated the expected entropy loss of the feature charac-

terizing the pages within a cluster, relative to the pages outside that cluster.

Figure 5 shows the five highest ranking features for each cluster. Also, the sizes

of the clusters are shown, as well as the second level for the largest cluster. Based

on the features, we can see that the four major clusters in CiteSeer are: “Algo-

rithms and Graphics,” “Systems,” “Networks and Security,” and “Software and

Programming Languages.”

As can be seen, the iterative cut-clustering algorithm yields a high-quality

clustering, both on the large scale and small scale, as supported by the split of

topics on the top level, and the focused topicality on the lowest level clusters.

Also, because of the strict bounds that the algorithm imposes on the expansion

for each cluster, it may happen that only a subgraph of G gets clustered into

nontrivial clusters. This is also the case for the CiteSeer data, which is a very

sparse graph (with an average node degree of only about 3.5). Thus, many of the

initial documents do not get clustered at the lowest level. Nevertheless, when

this is the case, the clusters that do get produced are still of very high quality

and can serve as core communities or seed sets for other, less strict, clustering

algorithms.

400 Internet Mathematics

5.2. Open Directory

The Open Directory Project [Dmoz 98], or dmoz, is a human-edited directory

of the web. For our experiment we start off with the homepage of the Open

Directory, http://www.dmoz.org, and crawl all web pages up to two links away,

in a breadth-first approach. This produces 1,624,772 web pages. The goal is

to see if and how much the clusters produced by our cut-clustering algorithm

coincide with those of the human editors.

In order to cluster these web pages, we represent them as nodes of a graph,

where the edges correspond to hyperlinks between them, but we exclude all links

between web pages of the same domain, because this biases the graph. We also

exclude any internal dmoz links. We will elaborate more on how internal links

affect the clustering at the end of this section. The final graph is disconnected,

with the largest connected component containing 638,458 nodes and 845,429

edges. The cut-clustering algorithm can be applied to each connected component

separately, or to the entire graph at once. For reasons of simplicity, and since the

graph is not too large to handle, we choose the second approach. The average

node degree of the graph is 1.47. Similar to the CiteSeer data, before applying

the clustering algorithm, we make the graph undirected and normalize the edges

over the outbound links.

Applying the cut-clustering algorithm for various values of α, we build the

hierarchical tree of Figure 4 for this graph. Naturally, at the highest level we get

the connected components of the initial graph. For the next two levels, only small

pieces of the connected components are being cut off. At level four, the largest

connected component gets broken up into hundreds of smaller clusters. There

are many clusters that contain a few hundred nodes. The largest cluster contains

about 68,073 nodes. Table 2 shows the 12 largest dmoz clusters and the top three

features extracted for each of them. We notice that the top two clusters contain

web pages that refer to or are from the search engines Yahoo! and Altavista,

reflecting their popularity and large presence in the dmoz category. The other

ten clusters correspond to categories at the highest or second highest level of

dmoz. In fact, 88 of the top 100 clusters correspond to categories of dmoz at the

two highest levels. Regarding the coverage of the clusters, the top 250 clusters

cover 65 percent of the total number of nodes, and the top 500 clusters cover

over 85 percent.

Compared to the CiteSeer data, we conclude that the dmoz clusters are rel-

atively smaller, but more concentrated. This is most likely the result of the

extremely sparse dmoz graph. Still, the cut-clustering algorithm is able to ex-

tract the most important categories of dmoz. A limitation of our algorithm is in

finding broader categories, for example, corresponding only to the highest level

Flake et al.: Graph Clustering and Minimum Cut Trees 401

Size Feature 1 Feature 2 Feature 3

68,073 in yahoo yahoo inc copy yahoo inc

24,946 about altavista altavista company altavista reg

18,533 software search on software software top

17,609 economy search economy regional economy about

14,240 health about dmoz health search on health top

13,272 employment about dmoz employment search on employment top

11,867 tourism search tourism search tourism top

10,735 personal pages search pages search on personal pages

9,452 environment search environment top environment regional

8,289 entertainment search entertainment about entertainment top

7,813 culture top culture about culture search

7,421 sports search sports regional sport top

Table 2. Top three features for largest dmoz clusters.

of dmoz, but this is also a result of the sparseness of the graph. We have applied

less restrictive clustering algorithms on top of the cut-clustering algorithm, such

as agglomerate and k-means algorithms, and were able to add an intermediate

level to the hierarchical tree that almost coincided with the top-level categories

of dmoz.

Regarding internal links, if we repeat the same experiment without excluding

any internal links within dmoz or between two web pages of the same site, the

results are not as good. Internal links force clusters to be concentrated more

around individual web sites. In particular, when a web site has many internal

links, because of normalization, the external links get less weight and the results

are skewed toward isolating the web site. We suggest that internal and external

links should be treated independently. In our examples we ignored internal links

entirely, but one could also assign some small weight to them by normalizing

internal and external links separately, for example.

5.3. The 9/11 Community

In this example we did not cluster a set of web pages, but were interested in

identifying a single community, by using the cut-clustering algorithm. The topic

used to build the community was September 11, 2001. Ten web pages were used

as seed sites and the graph included web pages up to four links away that were

crawled in 2002. The artificial sink was connected to the graph by edges with the

smallest possible α value that broke it into more than one connected component.

This resulted in a community of size 6,257. Table 3 shows the top 50 features

within that community. Again, even though the clustering algorithm considered

402 Internet Mathematics

1. A.terrorism 26. E.attacks

2. F.terrorist attacks 27. F.afghan

3. F.bin laden 28. F.laden

4. E.terrorism 29. F.war on terrorism

5. F.taliban 30. A.terror

6. F.on terrorism 31. F.afghanistan

7. F.in afghanistan 32. F.homeland

8. F.osama 33. F.the world trade

9. F.terrorism and 34. F.on america

10. F.osama bin 35. F.the terrorist attacks

11. F.terrorism 36. A.terrorism http

12. F.osama bin laden 37. F.the terrorist

13. F.terrorist 38. A.emergency

14. E.afghanistan 39. F.of afghanistan

15. F.against terrorism 40. F.the attacks

16. F.the taliban 41. F.the september 11

17. E.terrorist 42. F.september 11th

18. F.to terrorism 43. F.wtc

19. A.state gov 44. F.of terrorism

20. F.anthrax 45. A.attacks

21. F.terrorist attack 46. A.www state gov

22. F.world trade center 47. F.sept 11

23. F.the attack 48. T.terrorism

24. F.terrorists 49. F.attacks on the

25. A.terrorist 50. F.qaeda

Table 3. Top 50 features of the 9/11 community. A prefix A, E, or F indicates

whether the feature occurred in the anchor text, extended anchor text (that is,

anchor text including some of the surrounding text), or full text of the page,

respectively.

only the link structure of the web graph, all top features, as extracted from the

text, show the high topical concentration of the 9/11 community.

6. Conclusions

We have shown that minimum cut trees, based on expanded graphs, provide

a means for producing quality clusterings and for extracting heavily connected

components. Our analysis shows how a single parameter, α, can be used as a

strict bound on the expansion of the clustering while simultaneously serving to

bound the intercluster weight as well. In this manner, we collapse a bicriterion

into a single parameter framework.

Flake et al.: Graph Clustering and Minimum Cut Trees 403

While identifying communities is an NP-complete problem (see Section 7 for

more details), we partially resolve the intractability of the underlying problem by

limiting what communities can be identified. More specifically, the cut-clustering

algorithm identifies communities that satisfy the strict bicriterion imposed by

the choice of α, and no more. The algorithm is not even guaranteed to find all

communities that obey the bounds, just those that happen to be obvious in the

sense that they are visible within the cut tree of the expanded graph. Hence,

the main strength of the cut-clustering algorithm is also its main weakness: it

avoids computational intractability by focusing on the strict requirements that

yield high-quality clusterings.

All described variations of the cut-clustering algorithm are relatively fast (es-

pecially with the use of the heuristic of Section 3.4), simple to implement, and

give robust results. The flexibility of choosing α, and thus determining the qual-

ity of the clusters produced, is another advantage. Additionally, when α is not

supplied, we can find all breakpoints of α fast [Gallo et al. 89].

On the other hand, our algorithms are limited in that they do not parameterize

over the number and sizes of the clusters. The clusters are a natural result of

the algorithm and cannot be set as desired (unless searched for by repeated

calculations). Also note that cut clusters are not allowed to overlap, which is

problematic for domains in which it seems more natural to assign a node to

multiple categories (something we have also noticed with the CiteSeer data set).

This issue is a more general limitation of all clustering algorithms that produce

hard or disjoint clusters.

Implementation-wise, maximum flow algorithms have significantly improved

in speed over the past years ([Goldberg 98], [Chekuri et al. 97]), but they are

still computationally intense on large graphs, being polynomial in complexity.

Randomized or approximation algorithms could yield similar results, but in less

time, thus laying the basis for very fast cut-clustering techniques of high quality.

7. Proof of Theorem 3.2

We now provide a proof of Theorem 3.2 in Section 3. In fact, we shall prove a

slightly more general theorem:

Theorem 7.1. Define PARTITION INTO COMMUNITIES, or simply COMMU-

NITIES, as follows:

404 Internet Mathematics

PROBLEM: PARTITION INTO COMMUNITIES

INSTANCE: Undirected, weighted graph G(V,E),

real parameter p ≥ 1/2, integer k.
QUESTION: Can the vertices of G be partitioned into k disjoint sets

V1, V2, ..., Vk, such that for 1 ≤ i ≤ k, the subgraph of G induced by Vi is a

community, that is, ∀Vi,∀u ∈ Vi, v∈Vi w(u, v) ≥ p · v∈V w(u, v)?

PARTITION INTO COMMUNITIES is NP -complete.

Proof. We will prove the above theorem by reducing BALANCED PARTITION,

a restricted version of PARTITION, to PARTITION INTO COMMUNITIES.

Here are the definitions of PARTITION (from [Garey and Johnson 79]) and

BALANCED PARTITION.

PROBLEM: PARTITION

INSTANCE: A finite set A and a size s(a) ∈ Z+ for each a ∈ A.
QUESTION: Is there a subset A ⊆ A such that

a∈A s(a) = a∈A−A s(a)?

PROBLEM: BALANCED PARTITION

INSTANCE: A finite set A and a size s(a) ∈ Z+ for each a ∈ A.
QUESTION: Is there a subset A ⊆ A
such that a∈A s(a) = a∈A−A s(a),

and |A | = |A|/2?

Both PARTITION and BALANCED PARTITION are well-known NP-complete

problems ([Karp 72] and [Garey and Johnson 79]). To prove Theorem 7.1 we

will reduce BALANCED PARTITION to COMMUNITIES.

First, it is easy to see that a given solution for COMMUNITIES is verifiable

in polynomial time, by checking whether each node is connected to nodes of the

same cluster by at least a fraction p of its total adjacent edge weight.

We transform the input to BALANCED PARTITION to that of COMMU-

NITIES. The input set C has cardinality n = 2k. We construct an undirected

graph G with 2n + 4 nodes as follows. First, n of G’s nodes form a complete

graph Kn with all edge weights equal to w, where
s(amin)

n > w > 0, and amin has

the smallest size s(amin) among all elements ai of A. Let us call these nodes the

core nodes of the graph. Next, a satellite node is connected to each core node,

with edge weight w + , such that min{w2 , |s(ai)−s(aj)|n } > > 0, for all ai and

aj . The n satellite nodes all have degree 1 (Figure 6).

Flake et al.: Graph Clustering and Minimum Cut Trees 405

Figure 6. Core and satellite nodes forming the core graph.

Now, we add two more nodes to the graph, which we call base nodes. Every

core node is connected to both base nodes by edges of equal weight. We make

sure that each core node is connected to the base nodes by a different s(ai) value.

Finally, we add two more satellite nodes, one to each base node, with edges of

weight . See Figure 7 for the final graph.

Figure 7. Final graph with base nodes.

Now, let us assume that COMMUNITIES is solvable in polynomial time. We

transform an input of BALANCED PARTITION as mentioned above, and set

p = 1/2 and k = 2.

Assume that COMMUNITIES gives a solution for this instance. Then, the

following statements can be verified (we leave the proofs to the reader):

1. the solution must partition the core nodes into two nonempty sets, say S1

and S2.

2. the partitioning cannot place both base nodes in the same set.

3. S1 and S2 contain the same number of core nodes.

406 Internet Mathematics

4. all satellite and core nodes satisfy the community property, that is, they

are more strongly connected to other community members than to non-

members.

Notice that the last statement does not include base nodes. Is it possible

that their adjacent weight is less within their community? The answer depends

on how the core nodes get divided. If the core nodes are divided in such a

way that the sum of their adjacent ai values is equal for both sets, then it is

easy to verify that the base nodes do not violate the community property. In

the opposite case, one of the two base nodes will be more strongly connected

to the nodes of the other community than to the nodes of its own community.

Thus, the only possible solution for COMMUNITIES must partition all ai into

two sets of equal sum and cardinality. But this implies that any instance to

the BALANCED PARTITION problem can be solved by COMMUNITIES. And

since BALANCED PARTITION is NP -complete and we can build the graph G

and transform the one instance to the other in polynomial time, PARTITION

INTO COMMUNITIES is NP-complete, as well.

References

[Bern and Eppstein 96] M. Bern and D. Eppstein. “Approximation Algorithms for

Geometric Problems.” In Approximation Algorithms for NP-Hard Problems,

edited by D. S. Hochbaum, pp. 296—345. Boston: PWS Publishing Company,

1996.

[Brin and Page 98] S. Brin and L. Page. “Anatomy of a Large-Scale Hypertextual

Web Search Engine.” In Proc. 7th International World Wide Web Conference,

pp. 107—117. New York: ACM Press, 1998.

[Chekuri et al. 97] C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and

C. Stein. “Experimental Study of Minimum Cut Algorithms.” In Proc. 8th

ACM-SIAM Symposium on Discrete Algorithms, pp. 324—333. Philadelphia: SIAM

Press, 1997.

[Cherkassky and Goldberg 97] B. V. Cherkassky and A. V. Goldberg. “On Imple-

menting Push-Relabel Method for the Maximum Flow Problem.” Algorithmica

19 (1997), 390—410.

[CiteSeer 97] CiteSeer. Available from World Wide Web (http://www.citeseer.com),

1997.

[Dmoz 98] Dmoz. Available from World Wide Web (http://www.dmoz.org), 1998.

[Everitt 80] B. Everitt. Cluster Analysis. New York: Halsted Press, 1980.

Flake et al.: Graph Clustering and Minimum Cut Trees 407

[Flake et al. 00] G. W. Flake, S. Lawrence, and C. L. Giles. “Efficient Identification

of Web Communities.” In Proceedings of the Sixth International Conference on

Knowledge Discovery and Data Mining (ACM SIGKDD-2000), pp. 150—160. New

York: ACM Press, 2000.

[Ford and Fulkerson 62] L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Prince-

ton: Princeton University Press, 1962.

[Gallo et al. 89] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. “A Fast Parametric

Maximum Flow Algorithm and Applications.” SIAM Journal of Computing 18:1

(1989), 30—55.

[Garey and Johnson 79] M. R. Garey and D. S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. New York: Freeman, 1979.

[Goldberg 98] A. V. Goldberg. “Recent Developments in Maximum Flow Algorithms.”

Technical Report No. 98-045, NEC Research Institute, Inc., 1998.

[Goldberg and Tarjan 88] A. V. Goldberg and R. E. Tarjan. “A New Approach to the

Maximum Flow Problem.” J. Assoc. Comput. Mach. 35 (1998), 921—940.

[Goldberg and Tsioutsiouliklis] A. V. Goldberg and K. Tsioutsiouliklis. “Cut Tree

Algorthms: An Experimental Study.” J. Algorithms. 38:1 (2001), 51—83.

[Gomory and Hu 61] R. E. Gomory and T. C. Hu. “Multi-Terminal Network Flows.”

J. SIAM 9 (1961), 551—570.

[Hu 82] T. C. Hu. Combinatorial Algorithms. Reading, MA: Addison-Wesley, 1982.

[Jain and Dubes 88] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.

Englewood Cliffs, NJ: Prentice-Hall, 1988.

[Kannan et al. 00] R. Kannan, S. Vempala, and A. Vetta. “On Clusterings - Good,

Bad and Spectral.” In IEEE Symposium on Foundations of Computer Science,

pp. 367—377. Los Alamitos, CA: IEEE Computer Society, 2000.

[Karp 72] R. M. Karp. “Reducibility among Combinatorial Problems.” In Complexity

of Computer Computations, edited by R. E. Miller and J. W. Thatcher, pp. 85—

103. New York: Plenum Press, 1972.

[Kleinberg 98] Jon Kleinberg. “Authoritative Sources in a Hyperlinked Environment.”

In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 668—677. New

York: ACM Press, 1998.

[Mancoridis et al. 98] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner.

“Using Automatic Clustering to Produce High-Level System Organizations of

Source Code.” In Proceedings of the 6th Intl. Workshop on Program Compre-

hension, pp. 45—53. Los Alamitos, CA: IEEE Computer Society, 1998.

[Nagamochi et al 94] H. Nagamochi, T. Ono, and T. Ibaraki. “Implementing an Effi-

cient Minimum Capacity Cut Algorithm.” Math. Prog. 67 (1994), 297—324.

408 Internet Mathematics

[Nguyen and Venkateswaran 93] Q. C. Nguyen and V. Venkateswaran. “Implemen-

tations of Goldberg-Tarjan Maximum Flow Algorithm.” In Network Flows and

Matching: First DIMACS Implementation Challenge, edited by D. S. Johnson and

C. C. McGeoch, pp. 19—42. Providence, RI: Amer. Math. Soc., 1993.

[Padberg and Rinaldi 90] M. Padberg and G. Rinaldi. “An Efficient Algorithm for the

Minimum Capacity Cut Problem.” Math. Prog. 47 (1990), 19—36.

[Saran and Vazirani 91] H. Saran and V. V. Vazirani. “Finding k-Cuts within Twice

the Optimal.” In Proceedings of the 32nd Annual Symposium on Foundations of

Computer Science, pp. 743—751. Los Alamitos, CA: IEEE Computer Society, 1991.

[Wu and Leahy 93] Z. Wu and R. Leahy “An Optimal Graph Theoretic Approach

to Data Clustering: Theory and Its Application to Image Segmentation.” IEEE

Transactions on Pattern Analysis and Machine Intelligence 15:11 (1993), 1101—

1113.

Gary William Flake, Yahoo! Research Labs, 74 North Pasadena Ave., 3rd Floor,

Pasadena, CA 91103 (flake@yahoo-inc.com)

Robert E. Tarjan, Computer Science Department, Princeton University, 35 Olden

Street, Princeton, NJ 08544 (ret@cs.princeton.edu)

Kostas Tsioutsiouliklis, NEC Laboratories America, 4 Independence Way, Princeton,

NJ 08540 (kt@nec-labs.com)

Received September 23, 2003; accepted April 1, 2004.

