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THE DIAMETER OF A CYCLE PLUS A RANDOM MATCHING*

B. BOLLOB.S- AND F. R. K. CHUNG

Abstract. How small can the diameter be made by adding a matching to an n-cycle? In this paper this
question is answered by showing that the graph consisting of an n-cycle and a random matching has diameter
about log2n, which is very close to the best possible value. It is also shown that by adding a random matching
to graphs with certain expanding properties such as expanders or Ramanujan graphs, the resulting graphs have
near optimum diameters.
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1. Introduction. The following problem frequently comes up in connection with
network optimization: For given integers n and k, find a graph on n vertices with maximum
degree k, having diameter as small as possible.

The complementary problem ofthe preceding problem can be described as follows:
For given integers k and D, find a graph, with bounded degree k and diameter at

most D, having as many vertices as possible.
Known solutions for these problems fall into two types; one type is to construct

explicitly such good graphs [3], [4], [8], [17] and the other is to take the probabilistic
approach by analyzing the random regular graphs [6], [7], [10]. As it turns out, random
graphs generally outperform those graphs constructed by various methods (with a few
exceptions when n or D is small). In fact, random graphs have diameters very close to
the optimum value, while the best constructions have much larger diameters ], [10].

Although random graphs are easy to analyze probabilistically, the memory required
for storing the edges is proportional to n 2, whereas systematic constructions tend to use
much less memory. For instance, some r-regular expander graphs only need to store k
numbers [11 ]. This is particularly crucial in certain network problems involving routing
and distributing computing. The result in this paper can be viewed as a "halfway" solution
which blends a good construction with a small amount of randomness. In particular,
our "hybrid" graphs only require cn memory to record all the edges (instead of cn 2 for
random graphs), while the diameters are near optimal.

We will show that the graph obtained by adding a random matching to the n-cycle
Cn has diameter very close to the optimum value, thus settling a problem of Farley and
Hedetniemi 13]. We also prove a general theorem which asserts that by adding a random
matching to k-regular graphs with certain expanding properties (detailed in 3) the
resulting graphs have diameter about logk n, which is the order ofthe best possible value.
The best-known expanding graphs were constructed by Lubotzky, Phillips, and Sarnak
[18] and have diameter 2 logk_ n. Adding a matching result, with high probability,
reduces the diameter by a factor of 2.

The paper is organized as follows. In 2 we obtain sharp diameter bounds for a
cycle plus a random matching. In 3, we discuss several generalizations, including a
general theorem which implies that adding a random matching to a k-regular graph with
certain expanding properties results in a graph with diameter very close to the optimum
value. In 4, we conclude with various remarks and questions.
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2. The diameter of a cycle plus a random matching. Let Cn denote an n-cycle with
vertices v, v2, vn, where v; is adjacent to vi / and all indices are then modulo n.
A matching on Cn is just a partition of { 1, n} into disjoint pairs (plus a singleton
if n is odd). It is clear that C has diameter In/2J. We will show that by adding a matching
to C the diameter can be reduced dramatically. We remark that it is known that any
graph on n vertices with maximum degree 3 has diameter at least log2 n 2 (see [2],
[10]) and the best constructions for degree 3 graphs has diameter 1.47 log2 n (see [12],
15]). First, we consider the probability space of all graphs formed by adding a matching

to Cn. We assume that any two such graphs have the same probability. We will prove
such hybrid graphs have diameter about the same as random graphs of degree 3.

THEOREM 1. Let G be a graphformed by adding a random matching to an n-cycle.
Then with probability tending to as n goes to infinity, G has diameter D(G) satisfying

log2 n c < D(G) =< log2 n + log2 log n + c

where c is a small constant (at most 10).
Proof. Let C denote the n-cycle in G and M denote a random matching in G. For

a vertex x, we define

Si(x) {y" d(x, y) do(x, y) },
:(x) IO S(x).

il

Now pick a fixed vertex x. Draw the chord (an edge in M) incident to x. This
determines Sl(X). Then we add the neighbors ofS(x) one by one to determine S2(x) and
proceed to determine S(x). Call a chord incident to a vertex in Si(x) inessential if the
other vertex in S(x) is within distance 3 log2 n (in C) of the vertices determined so far.
Since IBi(x) =< 3.2i, the probability of an edge being inessential (at level i) is at most

18" 2 + log2 n
n

Hence the probability that in the sequence of chords chosen in Bl(X) at least two chords
are inessential is at most

O(n-6/5(log2 n)2)
2 n

for l [log2 n/5]. Therefore the probability that for every vertex x at most one of the
chords in Bt(x) is inessential is at least O(n-l/5(log n)2). From now on we will be only
interested in graphs satisfying the property mentioned above, and will only consider
conditional probabilities on this event, say, event A.

For a fixed vertex x, consider those vertices y in Si(x) for which there is a unique
path from x to y of length i, say x0 x, Xl, , xi y, such that (i) if xi is adjacent
to y on the cycle C then Bi(x) has no vertex within 3 log2 n ofx on the side opposite to
x_ (see Fig. 1); (ii) if xi- IY is a chord then Bg(x) {xi} has no vertex on C within
distance 3 log2 n of x; (see Fig. 2).

Denote the set of y’s in (i) by C(x) and the set of y’s in (ii) by Di(x). Thus C(x) LA
Di(x) C_ Si(x). Now, ifA holds then

C/(x)[

_
2i- 2 and [Di(x)[ >-- 2i- 3 for i=< 1/2 log2 n.

Now we consider between 1/2 log2 n and ] log2 n. The probability of a chord being
inessential is at most

18.2 + log2 n
< n-1/6

n
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FIG.

for n large. Since there are at most 2 chords leaving Si(x) for 1/2 log n -< -< log2 n, the
probability that there are at least 2n-/ inessential chords leaving S(x) is at most

2in_/o
n-1/6"2in-/’ <= (n/On-/6)-’n-’/’ <= (n-/20)n’/’< n-5

for large n. Therefore, with probability -O(n-) for every x and every satisfying
+/- log2 n < < log2 n, at most 2n-/ inessential chords leave Si(x). Call this event B.

For y in C(x), a new neighbor of y in C is a "potential" element of C+ (x) and a
new neighbor, which is the end-vertex of the chord from y, is a "potential" element of
D+ (x). (Here "potential" means that the vertices in question become elements ofC+ (x)
or D+ (x), unless the corresponding edge is inessential.) Also, if y Di(x), then the two
new neighbors ofy on C are potential elements of Ci + (x). Hence ifA and B both hold,
then for 3 _-< _-< log2 n and for any x we have

Ci(x) >-- 2i-2 and Di(x) >-2i-3

and for 1/2 log2 n _-< -< ] log2 n we have

IC+ (x)l >= Ifi(x)l /2lD(x)l-2i+ n-/’,

O+ (x) ->- C;(x) 2 + In-l/l.

Therefore, for 3 -< -< log2 n, we have

Ci(x)

_
2i- and [Oi(x) >= 2i-4.

3logan

3logan

FIG. 2
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Now set io [1/2(log2 n + log2 log n + c)q. We want to estimate the conditional
probability (on A and B) for two points x and y having distance at least 2io + in G.
Let us choose chords leaving Cio(X) one by one. At each choice the probability of not
choosing the other end vertex in Cio(Y) is at most (2i- 3In).

Since we have to make at least ICio(X) l/2 >- 2i- 4 such choices, we have

Prb(d(x’y)>2i+llAfqB)<=( 2i- 3)2-4n
<= exp (--22io- 7/n)
_--< exp (-(log n)2- 7)
=< n-4

if c>= 9.
We are now ready to consider the probability that D(G) > 2io + 1.

Prob (D(G) > 2i0+ 1)-<(1 P(A)) + (1 P(B)) + ,Prob(d(x,y)> 2io+ 11A fqB)
X,y

<= cl(n-1/5(log n)2) + c2(n-2) + n-2 o( ).

Therefore almost all G have diameter at most

2[1/2 (logz n + log log n + 9)] =< log n + log2 log n + 10.

The proof of Theorem is complete.

3. Several generalizations. The proofin 2 can be easily carried over to the following
generalizations or variations of Theorem 1.

PROPOSITION 1. Ifwe add a random matching to a graph on n vertices which is a
disjoint union oflarge cycles (say at least 100n each), the resulting graph has diameter
D satisfying

log2 n c =< D(G) -_< log2 n + log2 log n + c

with probability tending to as n goes to infinity, where c is a small constant (at
most 10).

PROPOSITION 2. Suppose T is a complete binary tree on 2k vertices. Ifwe add
two random matchings ofsize 2k- to the leaves ofT, then the resulting graph has diameter
D satisfying

log2 n c’ _--< D(G) _-< log2 n + log2 log n + c

with probability tending to as n goes to infinity, where c and c’ are small constants at
most 10.

All the results in this paper are included in the following general version.
THEOREM 2. Suppose H is a graph on n vertices with bounded degree k satis-

fying the property that for any x V(H), the ith neighborhood N(x) of x (i.e., Ni(x)
{y: dn(x, y) i)) contains at least ck(k- 1)i- 2 verticesfor <- (1/2 + e) 1Ogk- n, where
e and c denote somefixed positive values. Then by adding a random matching to H the
resulting graph G has diameter D(G) satisfying

1Ogk n c _-< D(G) -_< 1Ogk n + 1Ogk log n + c

with probability tending to as n goes to infinity, where c is a constant depending on e

and c.
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Proof. The proof is very similar to the proof of Theorem 1. We will sketch the idea
without giving all the details. Let G denote the graph formed by adding a random matching
M to H. We define, for each vertex x, Si(x) and Bt(x) as before (in the proof of Theo-
rem 1). The definition of a chord being inessential stays the same except that log2 is
replaced by IOgk and 3 is replaced by k + 1.

It is easy to see that for l llOgk n/5J, the probability that, for every vertex x, at
most one of the chords in Bt(x) is inessential is at least O(n-/5(lOgk n)2). Similarly,
for 1/2 logk n =< =< (1/2 + e) logk n, the probability that at least kin-/l inessential chords
leaving Si(x) is at most n-5. Now we bound the conditional probability (on A and B).
We define Ci(x) and Di(x) the same way, except that we replace C by H and require that
Bi(x) have no vertex with distance (k + 1) 1Ogk n of xi in G (xi, y}. Again we have
C(x) >-- cki- 2 and ID(x) --> oki- 3 for =< 1/2 1Ogk n.

For between 1/2 1Ogk n and (1/2 + e) IOgk n, we have

ICi+ (x)[ >=(k- 1)1C(x)l + klOi(x)l -ki+ n-/,
D+ l(X) >-- C(x) k" + In-l/l.

Therefore, for 3 =< -< (1/2 + e) 1Ogk n we have

Ci(x) >= cki-3 and IOi(x) >= cki-4.

Now choose i0 [1/2 log n + log log n + c]. The probability of two vertices x and y of
distance > 2i0 + is at most

_< n-4.
n

Thus the probability that D(G) > 2i0 + is no more than O(n-l/5(log n)2) + O(n-2) +
n-2. Therefore almost all G have diameter

1Ogk n + 1Ogk log n + 10.

This concludes the proof of Theorem 2.
One natural question is which k-regular graphs satisfy the expanding property

Ni(x) >= cki- for every vertex x (as described in Theorem 2)? Ofcourse, random graphs
have such an expanding property. In the past few years much progress has been made
on various explicit constructions of so-called expander graphs ], 14], 16], 18], 19].
All these expander graphs have various expanding properties for different applications.
In particular, a graph is an expander graph if it has relatively small second largest eigen-
values for its adjacency matrix [18].

Let us denote by the second largest (in absolute value) eigenvalue ofthe adjacency
matrix ofa k-regular graph G. (Ofcourse, the largest eigenvalue is k.) Tanner [20] proved
that for any set X of vertices, the number of neighbors N(X) ofX is at least

k21XlN(X) >-
(k ) Xl/ +

Clearly if I,1 < k e, then G satisfies the expanding property required in Theorem 2.
Recently, Lubotzky, Phillips, and Sarnak 17] constructed graphs with X satisfy-

ing I1 --< 2/k- 1, which is the best possible value. They call these graphs Ramanujan
graphs. It is easy to see that Ramanujan graphs satisfy Ni(x) >- (k 1)i- /2 for each
vertex x. Ramanujan graphs have diameter 2 logg_ n + c, while the lower bound for
the diameter is logg_ n. By adding a matching to a Ramanujan graph, the resulting
graph has diameter (1 + o(1)) logk n.
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4. Concluding remarks. Many problems concerning the diameter ofgraphs remain
open. We mention several of them here.

(1) Find explicit constructions for graphs with n vertices and degree at most k having
diameter (1 + o(1)) 1Ogk- n.

(2) For given integers n, k, t, let f(n, k, t) denote the minimum value over all
diameters of graphs which are formed by deleting (any choice of) edges from a graph
with n vertices and degree at most k. The problem is to determine f(n, k, t) and to
characterize the optimal graphs.

(3) Find efficient algorithms for determining the diameter of a graph. The best-
known algorithms require O(n2"38) time or O(ne) time (see 10]). In particular, for planar
graphs is there an o(n2) algorithm?
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