
Recommendation systems: a probabilistic analysis

Ravi Kumar Prabhakar Raghavan Sridhar Rajagopalan Andrew Tomkins

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120.�
ravi, pragh, sridhar, tomkins � @almaden.ibm.com

Abstract

A recommendation system tracks past actions of a group
of users to make recommendations to individual members
of the group. The growth of computer-mediated marketing
and commerce has led to increased interest in such systems.

We introduce a simple analytical framework for recom-
mendation systems, including a basis for defining the utility
of such a system. We perform probabilistic analyses of al-
gorithmic methods within this framework. These analyses
yield insights into how much utility can be derived from the
memory of past actions and on how this memory can be ex-
ploited.

1. Introduction

Collaborative filtering (sometimes known as a recom-
mendation system) is a process by which information on
the preferences and actions of a group of users is tracked
by a system which then, based on the patterns it observes,
tries to make useful recommendations to individual users
[10, 12, 18, 19, 20, 22, 23]. For instance, a book recommen-
dation system might recommend Jules Verne to someone in-
terested in Isaac Asimov based on the fact that a number of
users have expressed simultaneous interest in both authors.
See [20, 22] and references therein for a comprehensive list-
ing of collaborative filtering projects as well commercial
systems.

Most research on recommendation systems has focused
on three areas: (i) Algorithms: the design of algorithms that,
given the past preferences of users, will make useful recom-
mendations; (ii) Human factors: how to gather the informa-
tion on user preferences as conveniently and unobtrusively
as possible — this issue runs the gamut from user interface
research to marketing science; (iii) Privacy issues: how to
combine the information gathered from a group of users to

the advantage of individual users, without divulging “sensi-
tive information” about other users.

Our focus is on the first of these areas — the design and
analysis of algorithms for collaborative filtering, and their
quantitative evaluation. Although the two latter areas are
just as important as the first, their treatment is relatively or-
thogonal to the problem we consider. To our knowledge,
there has been no prior theoretical study of this impor-
tant and emerging application of computing, widely seen
as the core of computer-mediated and web-based market-
ing [4, 9, 13].

Shardanand and Maes [19] report a cross-validation
study, in which the recommendations of various algorithms
are measured against real user preferences. Hill et. al. [12]
report a statistical analysis of correlations between recom-
mendations made by their system and users’ previously ex-
pressed preferences on a validation set (that is not used for
“training” the system). In all prior work we know of, how-
ever, filtering algorithms are designed first, followed by ex
post facto validation to measure user satisfaction. Our in-
tent, on the other hand, is to use a quantitative notion of
user satisfaction to drive the design of the algorithm, thus
enabling us to give provable guarantees on the usefulness
of the recommendations it generates.

Our main contributions are:
1. An analytical framework for evaluating algorithms for
collaborative filtering, including a basis for defining utility
(Section 2). Our focus is not on so-called active collabora-
tive filtering, where users must explicitly and actively rate
the items (books/movies) they encounter; rather, we focus
on systems that tacitly observe prior activity to before mak-
ing recommendations.
2. Probabilistic analyses of simple algorithms for collabo-
rative filtering, using these to derive insights on how much
prior history is useful and how to exploit it most efficiently.

2. The economic model

Our model for recommendation systems consists of three
components. The first component is a framework for rec-
ommendation systems. The second is a notion of utility
which defines the objective that the recommendation sys-
tem is trying to optimize. The final component is a simple
probabilistic model of user behavior. We have tried to keep
each of these components modular — any of them can be
replaced by more sophisticated notions. We feel that our
model is simple enough to be tractable and yet offer inter-
esting insights.

We will now describe each component, and the particular
choices we make in each case.

A framework for recommendation systems. We have
a set of � users

�������	��
�����
������
, for each of whom we

have a sample of ��� items (from a universe of � items) that
they have purchased

�
in the past. In this paper, we address

only the uniform case, i.e., ��� � �
���� . In the following
discussion, we will denote the set of items purchased by
user

�
by
�

as well. Thus, for all
�
, � � � � � .

The items can be viewed as nodes of a (hyper)graph and
the samples corresponding to users can be viewed as (hy-
per)edges in this graph.

The � items may be thought of as books, movies, web-
pages, etc; a recommendation algorithm takes as input the
sets of � items for each of the users, and outputs for each
user some of the remaining ����� items as a recommenda-
tion. In our case, we restrict our attention to algorithms that
make exactly one recommendation per user.

To facilitate the notion of what a user prefers, we as-
sume that the � items are partitioned into disjoint clusters� �
������
 ���

. Let "!$# �&%(')#+*�% be a function from an item
to its corresponding cluster. These clusters may be thought
of, for instance, as topics of books (science fiction, travel,
etc.). This clustering may or may not be known to the rec-
ommendation algorithm; more on this below.

Utility of recommendations. We assume the existence
of a utility function ,-!.# � %0/1# �&%2'3#+4
5 % giving the utility
,76 ��
98;: of recommending an item

8
to user

�
.

In this paper, we look at utility functions that are uniform
on clusters. Thus, if 76 8;:<� 76>= : then ,76 �?
@8;:A� ,76 ��
 = :
for every

��
98�
 = . Note an implicit simplification here: all
items in a cluster have the same utility for a given user (see
also Section 2.2). The objective of a recommendation algo-
rithm is to output a recommendation for each user so that
the utility of the recommendations, summed over all users,
is maximized.

After our simplification, the utility depends only on the
cluster that is recommended. Thus, we can think of an algo-B

Here “purchase” is a metaphor for transaction; it could also represent
rentals, browser clicks, etc.

rithm as choosing a cluster rather than choosing a particular
item.

Probabilistic user model. For the remainder of this pa-
per, we adopt the following probabilistic model of user be-
havior.

Each user
�DCE�

is characterized by a * -dimensional
vector F06 ��:G�-H F � 6 ��:I
����J
 F � 6 ��:@K , which represents a prob-
ability distribution over the clusters for each user. Naturally,
F�L�6 �:NM 4 and O L F�L96 ��:N��5

. The interpretation is that the
user’s sample of � prior purchases is generated by repeating
the following procedure � times independently: user

�
first

chooses cluster
� L with probability F L 6 �: and then chooses

an item uniformly from
� L . Thus, the sample could con-

tain repetitions. Note that even though there are clusters in
the items, there need be no clusters in the instance — the
samples drawn — because users may have no pronounced
preferences for clusters. This point is crucial: we do not
assume “planted” clusters in the data and seek to find them.

Our final simplification relates the user model and the
utility function. One could argue that this is indeed the case
when the point of view is the one corresponding to the ven-
dor. We assume that ,76 ��
98;: is proportional (and w.l.o.g.
in our analyses, equal) to F.L�6 �: for each user

8
and item

�
.

Thus, the objective of the recommendation system is to gen-
erate a recommendation

� L for each user
8

so that the sum
O L FPLQ6 ��: is maximized.

Notation. We denote by RS6T*
 �
 �
 F : a recommendation
problem with � users, � prior samples per user, * clusters
of items, and the set of probabilistic preferences F . When it
is obvious from the context, we abbreviate RS6T*
 �
 �
 F : by
RU6VF : or even R .

We denote by W�6 A
 ,
 RU6XF :9: the expected total utility of
algorithm A with utility function , and probabilistic prefer-
ences F . The expectation is over F . Since both , and RS6VF :
depend on F , we will use W�6 A
 F : instead.

Benchmarks. We may compare this expected utility
achieved by ALG with that achieved by two benchmarks : (i)
a weak benchmark; intuitively this benchmark knows , the
partitioning of items into clusters, and (ii) a strong bench-
mark, who knows this partitioning, as well as the precise
probability vector F06 ��: for each user

�
.

We denote by OPT the utility of the strong bench-

mark, which is O �UYF06 ��: , where YF06 ��:[ZJ\^]� � F06 ��: � _ �
`ba	c �Led � � FPL96 �:9� . Clearly OPT is an upper bound on the util-
ity of any algorithm.

Let OPT f denote the utility of the weak benchmark. Un-
like the strong benchmark, the utility of the weak bench-
mark depends in a complicated way on the particular choice
of R (see the example in Section 3). Indeed different
choices of R demand differing methods of using knowledge
of .

Limiting cases. It is instructive to consider two limit-
ing cases. If � ' � all edges in the graph occur with
large multiplicities, so any meaningful clusters are appar-
ent. Thus we have all the information available to the weak
benchmark. Additionally, if �1' � the algorithm’s esti-
mate of the distribution of a particular user becomes almost
correct with high probability, we have all the information
available to the strong benchmark.

2.1. Related research areas

Our model and approach builds on a number of research
areas; we now briefly explain these connections and the
ways in which our work differs.

Marketing science is rich in models of consumer behav-
ior and preferences [1, 3, 4, 14], however many of these
models do not yet appear to be mathematically tractable in
frameworks such as ours. Our user model is tractable but
very simplistic in comparison; but we hope in the future to
make the model more realistic.

In computer science, we describe three overlapping cat-
egories of related work. The first category consists of data
analysis tools such as clustering, data mining [2], latent se-
mantic indexing (LSI) [17], and learning [21]. In each of
these cases, the goal is to infer or learn a structure charac-
terizing a given data set. Clustering partitions the data set
into groups that are “similar” by some measure; data min-
ing looks for interesting patterns in the data; LSI analyzes
spectral properties of the term-document matrix to cluster
closely related documents; and learning builds a hypothesis
which will perform well when cross-validated against data
generated by the true “concept.”

Our work differs from each of these in a fundamental
way. Our goal is not to identify structures or patterns in
the data set, but to exploit these patterns when they exist
without necessarily inferring them formally. As the reader
will notice, compared to many of the algorithms used in the
aforementioned situations, our different goal allows us to
use simpler approaches.

The second category includes probabilistic methods such
as the work of Boppana [6] and a recent probabilistic anal-
ysis of LSI [17]. Our work departs from these in two re-
spects: (i) we seek simple algorithms (no eigenvector com-
putations); (ii) we do not make any assumption of over-
whelming preference; indeed, we do not require the users
to be drawn from one of a small number of “types”, as im-
plicitly needed in [17]. (On the other hand, our algorithm
does not achieve the strong document clustering results that
[17] establishes for LSI.)

The final category includes segmentation [15] problems.
This class is perhaps the most closely related because there
is an explicit notion of value or utility. The segmentation
model described in [15], however, is very general and does

not seem to be analyzable in our context. Tractable spe-
cial cases of the segmentation problem include facility lo-
cation [8], LSI, and clustering. In each of these cases, the
data is embedded in an explicit metric or “similarity” space,
which plays a central role in the proposed solutions. The
absence of this space is a basic difference between these
problems and ours.

2.2. Critique and extensions of the model

Our view of each user having a fixed preference for each
cluster, and the utility being proportional to this preference
is certainly very simplistic. We, however, believe that this
is a good first step from which important lessons can be
learned, and this should pave the way for further study.
Some obvious refinements include: (1) In reality, not all
clusters are alike. For instance, the cluster “science fiction”
is very different from the cluster “Java”: whereas one might
purchase a large number of science fiction books, it is un-
likely that one would purchase a large number of books on
Java. (2) We have assumed that all the items in a cluster are
equally attractive to a buyer; in reality, some items are more
popular than others. It is easy to augment our model with
a non-uniform distribution within each cluster, but the anal-
ysis appears harder. (3) We seek algorithms that maximize
the total utility, which is what the enterprise operating the
system may wish to do. Variations — such as maximizing
the minimum utility of any user — could model a situation
in which we wish to keep all the users happy. (4) We as-
sume that all users are equally important. In reality, we may
give greater weight to frequent purchasers. (5) In our model,
user preferences (indicated by prior purchases) are Boolean;
more generally, we may model more finely-graded prefer-
ences. In particular, one could extend the model to active
collaborative filtering where some of the expressed prefer-
ences could be negative (meaning, the user did not like a
particular item). (6) It would also be interesting to consider
time-dependent user preferences, leading to sequential col-
laborative patterns in which the system tries to infer what
each user needs next.

Despite these many possible extensions, we feel that our
model is a good start: it is simple enough to be tractable and
yet offers interesting insights. At the same time, it is chal-
lenging enough that many interesting cases remain open.

The reader may have noticed that our model does not
assume prior patterns of preferences (e.g., “scientists tend to
like science fiction”). How could we hope for collaborative
filtering in the absence of such explicit sub-populations? In
fact, our algorithm does make recommendations for each
user based on the preferences of similar users, as evident in
the sample data. Thus, if the sample data indicates strong
sub-populations we will in fact exploit them; if no patterns
are apparent, even the best algorithm, given the information

available to the strong benchmark, will not be able to find
much to exploit.

2.3. Main results

Our model for designing and measuring algorithms for
collaborative filtering is one of our main contributions. In
addition, we have several results that we establish in this
model.

In Section 3 we compare the performance of the weak
benchmark to that of the strong benchmark. This is useful
for two reasons: (i) the weak benchmark represents the limit
of what an algorithm can achieve with collaborative filter-
ing alone, when it manages to learn the clustering of items
(as evinced in the sample) “as well as possible”; any further
improvement must be achieved through a larger sample size
(and thus a better understanding of individual users’ prefer-
ences); and (ii) there are situations when the algorithm may
have access to at least some clustering information. We
show that when � ���

, OPT f�� OPT
M�� � 6�� *�� 5:

. We
extend this result to the general case of � samples, giving
a tradeoff between the information values of the number of
samples and identities of clusters. We also give tight bounds
for the special case of two clusters.

In Section 4 we consider recommendation algorithms
that, unlike the weak benchmark, do not enjoy knowledge of
the clusters. We give algorithms that are 4 �
	 4�� -competitive
with respect to OPT. Our algorithms are extremely simple.
In fact, we show that our algorithms garner information in
a truly collaborative way, i.e., as � increases, we show that
the performances of our algorithms approach OPT f .

3. Using collaborative information

If collaborative filtering yielded perfect information
about the clustering, then to what extent could such infor-
mation be exploited? To address this question, we study the
situation when � ' � . It is easy to see that under this
assumption, fairly simple algorithms can identify the clus-
ters (but for an event of vanishing probability) when such
clusters are delineated by the user preferences, and thus im-
portant for utility maximization. The issue, then, is how to
use this information. We will address three different aspects
of this question.

First, Section 3.1 addresses the performance of collab-
orative filtering as a function of * , the number of clusters.
Section 3.2 then examines the improvements possible as � ,
the number of samples per user, increases. Intuitively as *
grows and � stays fixed, the value of the collaborative infor-
mation should decline. Moreover, as � grows and * stays
fixed, the marginal benefit of increasing � should decline.
We will prove two results (Theorems 1 and 4) to formalize
these intuitions.

The above analyses depend on characterizing the worst
case distribution of user preferences (i.e., the F 6 �: ’s) given
� and * . While such facts are useful in evaluating the bene-
fits of collaborative information, the actual user distribution
is not truly adversarial. Therefore in Section 3.3 we pro-
vide an analysis that gives tighter performance bounds as a
function of simple, and measurable, parameters of the user
preference distributions. We restrict this complete analysis
to the simplest case, namely when both * and � are

�
.

3.1. The case � �� : the effect of * clusters

Consider the case when � ���
. This is the smallest

meaningful value of � : if � were
5
, no correlation infor-

mation between items would be available and thus, collabo-
rative filtering would be meaningless. For � ��� , each user�

is an edge in a graph whose nodes are the items. We will
use

�
as well to denote the edge corresponding to user

�
.

We first consider the case * ���
. In this case, the

nodes are partitioned into clusters
� �

and
���

. An algorithm
for this case must take a sequence of edges, and decide
for each edge whether to recommend an item from

� �
or

from
���

. Fix some problem RU6VF : , and assume w.l.o.g. that
O ����� F � 6 ��:GM O ����� F � 6 �: .

It is straightforward to see that any optimal algorithm
must vote for an item in

� �
whenever it sees a

� �
-edge. Fur-

thermore, whenever it sees a cross-edge, it must also vote
for

� �
unless O � F � 6 �:<� O � F � 6 �: , in which case it may

vote for either cluster. In either case, there exists an optimal
algorithm that votes for

� �
on cross-edges. Given a

���
-edge,

the optimal algorithm depends on the set
� F06 ��:@� .

VIC: Algorithm VIC(for Vote In Cluster), votes for
� �

when
presented with a

� �
-edge, or a cross edge. It votes for� �

when presented with a
� �

-edge.

VOC: Algorithm VOC(for Vote Out of Cluster), votes for
� �

on any input.

Finally, we describe a third algorithm called VRC, which
is never better than VIC, and sometimes worse. We will
show that for problems that induce the worst-case ratio to
OPT, VRC is equivalent to VIC, which is optimal for such
problems. Furthermore, VRC performs worse on these prob-
lems than on any other problem, and therefore has optimal
worst-case ratio over all problems. It is also much simpler
to analyze than VIC.

VRC: Algorithm VRC, for Vote Randomly on Cross-edges,
votes for

� L when presented with a
� L -edge and votes

uniformly at random when presented with a cross-
edge.

Example. It is illustrative to consider an example in
which VOC performs better than VIC. Let * ���

and let

�
have two types of users. First, there are a billion users

with distribution
H 4 ���.
 4 �X5K . And second, there are a thou-

sand users with distribution
H 4
5�K . The expected utility

of VOC on edges within cluster 2 will be 6T4 �X5:
�
/ 4 ��� /5?
 4?4?4
 4�4?4
 4?4�4 , while the expected utility of VIC will be5 4?4�4 � 6;4 �X5�:

�
/ 4 �X5 / 5?
 4?4?4
 4�4?4
 4?4�4 , approximately nine

times smaller.

We extend the definitions of VIC and VRC to general * as
follows. Say

� L is heavier than
���

if O � FPL96 �:�� O � F � 6 ��: .
Then for edge

� � 6��QL
 � � : , VIC votes for the heavier of
 76��@L :J
 76�� � : or for either if neither is heavier. (Here 6�� :
denotes the cluster containing item � .) VRC, on the other
hand, votes for a cluster chosen uniformly at random from
the two endpoints of the edge. VOC generalizes to a family
of algorithms for the case * � � .

Let 	.6 ALG

 F :�� W�6 ALG

 F : � W 6 OPT

 F : . We show that

VRC achieves the best possible worst-case performance ra-
tio when compared to OPT:

Theorem 1 If � � � and � ' � ,

1.
���� 	.6 VRC

 F : �
���� � W 6 VRC

 F :
W�6 OPT

 F :�� � �
� * � 5

and

2. for any algorithm ALG,
���� 	.6 ALG

 F : �
���� � W�6 ALG

 F :
W 6 OPT

 F :���� �
� * � 5 �

Note. This theorem in fact holds with * equal to the
number of clusters on which any user has non-zero proba-
bility. There are two significant lessons from this: (i) The
ratio depends on the spread of interests of the users. (ii)
If users have few interests, the ratio is good (e.g., if each
user is only interested in 4 clusters — reasonably realistic
— then the ratio is

� ���). This can be extended to the case
when most users have most of their probability distribution
on � * clusters.

Proof: First, recall that W�6 OPT

 F :$� O ����� YF06 ��: . Second,

the utility of VRC is a sum over users. The utility on user
�

depends on the edge
�

of the sample, and on the distributionF06 �: . A cross-edge from
� L to

���
occurs with probability� F�L@6 �: F � 6 �: and generates utility 6VF.LQ6 ��: � F � 6 ��:@: � � (since

VRC votes between the two candidate clusters uniformly at
random on cross-edges). A

� L -edge occurs with probability
F
�
L 6 ��: and generates utility F.L�6 �: . Thus, the utility of VRC

can be written:

W�6 VRC

 F : ���

�����

�� ���� L� � � � � F L 6 ��: F � 6 ��:IF L 6 �: � F � 6 ��:�

�
��
L d � F"!L 6 �:�# � �

��� �%$ ��
L d � F

�
L 6 �:�#

Since the utility of OPT only depends on YF 6 �: , we can as-
sume without loss of generality that for any worst-case F ,
each F06 ��: minimizes O L F

�
L 6 �: subject to YF06 ��: remaining

unchanged. For concreteness, let & 6 �: be the “favorite” clus-
ter of user

�
, so F�')(�)* 6 ��: � YF06 ��: . Since YF

�
6 ��: is fixed, we

seek to minimize O L)+d ')(�)* F �L 6 �: subject to O L,+d ')(�-* FPLQ6 ��: �5 � YF&6 �: . This symmetric and concave function is minimized
when F L 6 �:$� F � 6 �: for each

8/.� = .� & 6 �: .
Thus, in the worst-case preference distribution, each

user is characterized by two quantities, namely & 6 �: and
YF06 ��: . We also know that YF06 ��: M 5 � * and that F L 6 �: �
6 5 � YF06 �:9: � 6;* � 5:

for each
80.� & 6 ��: . To understand the

nature of these distributions better, we require two lemmas.
Consider any problem RU6 �
 *
 �
 F : . Define the symmet-

ric closure R�1�6 �
 *
 *32 �
 F41 : of RS6 �.
 *
 �
 F : as follows:
for each user

�
in the original problem, replace

�
with

*32 users, with distributions 5 6XF06 ��:@: , for each permutation5 C76 �
, and let F81 be the resulting distribution function.

Lemma 2 For any F81 , W�6 VIC

 F81 :N� W 6 VRC

 F81 : and VIC

is optimal for F91 .
Proof: First, we show that W�6 VIC

 F31 :G� W�6 VRC

 F81 : . As-

sume VIC votes for
� L on cross edges between

� L and
� �

.
Since the distribution is symmetric, every user who prefers� L to

� �
will have a paired user with the opposite preference.

The utility of VIC on these two users will be equivalent to
the utility of VRC.

Next, we show that VRC is optimal for any symmet-
ric distribution. Let ALG 6 8Q
 = : be the cluster voted for
by ALG when presented with an edge between

� L and
� �

.
The total utility of ALG on such edges in F31 is there-
fore O ����� O;: ��<�= F :�>@? (L * 6 ��: F :�>�? (� * 6 �: F :�>@? (ALG (L�A � *B* 6 �: .
If ALG 6 8�
 = : .C � 8�
 = �
then this latter sum is simply O L)+d � +d ' F L 6 �: F � 6 �: F ' 6 �:J� As-
sume otherwise; say, that ALG

�
VRC

�
Then this sum

is instead O L)+d � F�L96 ��: F � 6 ��: 6VF�LJ6 ��: � F � 6 �:9: � �3� 6;* ��?: O L)+d � F �L 6 ��: F � 6 ��: . By straightforward differential calcu-
lus, this sum is always at least as large. C
Lemma 3 (Permutation Lemma) Let ALG be any opti-
mal algorithm that knows the clusters for a problem
RU6 �
 *
 �

 F : . Then, for any algorithm ALG D , W�6 ALG

 F :GM

W�6 ALG D
 F 1 :
Proof: Notice that mean utility over all users for OPT is
unchanged from R to RE1 . By assumption W�6 ALG

 F : M
W�6 VRC

 F : . And by Lemma 2, W 6 VRC

 F91 : M W 6 ALG D
 F41 : .

So we must show only that W�6 VRC

 F : M W�6 VRC

 F91 : .
Breaking VRC’s expected utility into within-cluster edges
and cross-edges, we can write W 6 VRC

 F :$� O
�
L d � F !L 6 ��: �O L)+d � F�L�6 �: F � 6 �: 6XF�LJ6 �: � F � 6 ��:@: � � . Clearly the mean util-

ity of VIC on R and R 1 is identical for within-cluster edges.

For cross-edges, the expected utility can be rewritten as
O L)+d � F �L 6 �: F � 6 �:J� This is clearly identical to the utility on
cross-edges in R�1 . C
We now complete the proof of the theorem. We have shown
that the distribution of YF06 ��: is the only interesting issue.
Let � 6VF : denote the fraction (density) of users

�
who have

YF06 �:$� F . Then 	.6 VRC

 F : can be written as	 6 VRC

 F : �
� �?= � 6�� : VRC 6�� :�� �� �?= � 6�� : � � �

where

VRC 6�� :$� � ! ��� 6 5 ��� :
	 � � 5 ���
* � 5� � 6 5 ��� : !

* � 5
By componendo-dividendo, the ratio is minimized by con-
centrating all the density at a particular value of � , namely
the one where VRC 6�� : � � is minimized in the interval� C # 5 � *
5 % . Standard differential calculus shows that
VRC 6�� : � � is minimized at � � 5 � � * and that conse-
quently, 	.6 VRC

 F : M � � 6�� * � 5�: .
We also exhibit a distribution F on which 	.6 VRC

 F :��� � 6�� * � 5�:
. Let � C # 5 � *
5 % , and consider a user F 6 �: �

H �

��� �� ��� �6 5 ��� : � 6;*�� 5:J
����9
 6 5 ��� : � 6T* � 5:9K . Let RU6VF : be the

problem on * equal-size clusters that is the symmetric clo-
sure of

�
. VRC is optimal for this distribution by Lemma 2.

The utility of VRC per user on this distribution is:

W�6 VRC

 F : � � ��� � � � ��6 5 ��� : � � � � ������ �

�
� 6 5 ��� : � � 5 ���*7� 5

� *� � � � � � 5
* � 5 �

Clearly, the utility of OPT per user is � . We can therefore
choose � to maximize 6T*� � � � � � 5�: � 6���6T* � 5�:9:

, which
yields � �-5 � � * , and gives ratio

� � 6�� * � 5:
. C

3.2. How many samples do we need?

We now consider values of � � � , and study the behavior
of the worst-case performance ratio as � varies for a fixed * .
We continue to assume that � ' � . The primary question
is: to what extent does a sample size of � over a distribution
over * points benefit us (relative to a sample size of

�
). A

simple extension of VRC would be to pick a random point
in � and choose the cluster containing that point. A careful
look, however, reveals that this algorithm is equivalent to
the � � � case, and thus does not improve on the competi-
tive ratio of

� � 6 � * � 5�:
.

The algorithm that we will study in this section will be
called MAX. The algorithm looks at a sample and votes in
the cluster that contains the largest number of elements in
the sample. If there is more than one cluster that qualifies,
MAX chooses one at random from among those that do. No-
tice that when � � � this specializes to VRC.

By arguments similar to those in Section 3.1, we can de-
duce that the worst case distribution can be assumed to be
symmetric and that for each

�
, F L 6 ��:G� 6 5 � YF06 ��:@: � 6T*7� 5�:

whenever
8/.� & 6 �: .

Let � 6�� : denote the fraction (density) of users who have
YF06 ��:$� � . Then, again as before, we argue that	 6 MAX

 F : � `
��� ��� ��� � A �! MAX 6�� :�
where MAX 6�� : denotes the expected utility of MAX when
presented with a single user with distribution F � � � and
F L � 6 5 �"� : � 6T*S� 5�: �$#

for each
� � 8 � * and such that� M 5 � * .

The performance of MAX depends on the gap % � �7� #
between � and

#
. If % is small relative to

5 � * , say *% �'& ,
then regardless of the algorithm, 	 M 5 � & . Thus, we only
need to look at the case that *% � & .

We will consider two types of bad events: first that
the number of samples in the first cluster is smaller than
6�� �(% � ��: � , and second that the number of samples in any
other cluster is larger than 6 # ��% � ��: � . In the event that the
first cluster is not the one with the largest number of sam-
ples, one of the two bad events is guaranteed to have oc-
curred. The probability of any bad event can be bounded by
**) c+ 69�,% � � � 6 � * :9: using a standard tail bound. The initial
factor of * is the union bound over all the bad events. Con-
sequently, � �.- 696;* � & � :0/21�3 6T* � & :9: is sufficient to obtain	 M 5 � & ; this bound is in fact tight asymptotic in * .

Theorem 4 For a given * , if � M4- 696;* � & � :5/61�3 6;* � & :@: , then
for any user preference F , W 6 VRC

 F : M 6 5 � & : � W�6 OPT

 F : .

3.3. A tighter analysis of the case � � �
 * ��

This section gives tighter performance bounds for par-
ticular classes of preference distributions. Let � � * � � ,
and let � � and � � be the first two moments, taken over
users, of the probability that a user buys from

� �
: � � ZI\^]�

O ����� F � � 6 ��: . We assume � � and � � are fixed, and de-
termine the worst case distribution, and the correspond-
ing competitive ratio. The performance of VRC can be re-
written as:

W�6 VRC

 F : � �

����� 6
� F
� � 6 �: � � F � 6 �: � 5:$� � 6 � � � � � : � 5?�

In other words, the performance of VRC is completely char-
acterized by the first two moments of the preference dis-
tribution. We must also extend the permutation lemma to

fixed-moment distributions to obtain the following lemma,
whose proof is omitted.

Lemma 5 For fixed � � and � � , the user preference distri-
bution F that minimizes 	 6 VRC

 F : contains only two distinct
values of F � 6 �: .
Let � � and � � be the candidate values of F � 6 �: , and let

�
and

� � 5 � # � be the fraction of users with F � 6 ��: � � � and
F � 6 ��:�� � � respectively. We can now show the following
lemma.

Lemma 6 For � � C #+4
5 � � % ,
`ba c� � W�6 VRC

 F :@� � ` a c� ? A � � � #�� 6 5 ��� �J: � # � � � �� 6 5 � � 5 � �.6 � � � � � : � �?:I�
Proof: Incorporating the constraints using Lagrange multi-
pliers, we obtain the condition that � � � � � �-5

. Substitut-
ing back, we can obtain

� � � 5 � � 5 � �.6 � � � � � :�

and � � � 5 � � 5 � �.6 � � � � � :�

from which the lemma follows. C
Now, using the above observations, the ratio of the perfor-
mance of VRC and OPT can be obtained as

Lemma 7 If
� � � � � � � , then for all distributions F with

moments � � and � � ,
W�6 VRC

 F :
W�6 OPT

 F :
M � 6 ��� � 5:5 � � 5 � � � �

It can be seen that the right-side quantity is at least
� 6 � � �5�:

, for
� � 6 5 � � � : � � . The above expression lets us

write down the exact ratio for various moments of the pref-
erences; as expected the ratio approaches one for both large
and small values of

�
. Surprisingly, the bound is a function

of one variable, rather than a function of both � � and � � .
4. Algorithms

In the previous section, we showed that perfect collab-
orative filtering allows an algorithm to be competitive with
respect to a benchmark who knows each user’s distribution.
Here we study the complementary question: we give simple
algorithms to perform collaborative filtering when the clus-
ters are not known, with � being bounded. We continue to
focus on the basic case, namely * ���

and � ���
. Fur-

thermore, the results in this section require that the clusters

have roughly equal sizes. Removing this assumption seems
challenging.

The primary result in this section is that a relatively sim-
ple algorithm which we call NEIGHBOR compares favorably
to OPT, which knows both the clusters and the distribution
of each user. We also give results comparing NEIGHBOR

to VRC, who knows just the clusters. To summarize, we
show that for any distribution F , W 6 NEIGHBOR

 F : � ��� ��� �
W�6 VRC

 F : . From Section 3, W 6 VRC

 F : � ��� ��� � W�6 OPT

 F : .
We also show that W 6 NEIGHBOR

 F : � �
	 4��
�
W�6 OPT

 F : .
(Note that

�
	 4�� is strictly greater than 6 � � ����:
�
, thereby

showing that NEIGHBOR and VRC achieve their worst cases
on different distributions.)

We also propose a new algorithm, the VOTING algorithm,
which performs always at least as well as NEIGHBOR.

4.1. The NEIGHBOR algorithm

The NEIGHBOR algorithm is very simple:

Let � be the graph corresponding to the
problem instance. For a user

� L ’s sample� �@L�A �
 �@L�A � � , recommend an item �QL�A ! such that
either

� �QL�A �
 �@L�A ! � C � or
� �QL�A �
 �@L�A ! � C � .

Despite its simplicity, the performance of this algorithm is
not very far from optimal OPT. We prove the following the-
orem:

Theorem 8 For any set of preferences F ,
W�6 NEIGHBOR

 F : M 4 �
	 4��
�
W�6 OPT

 F :J�
Proof: The proof consists of two steps. First, we prove the
theorem for a particular probabilistic distribution ��6 � : and
then show (Lemma 10) that the performance of NEIGHBOR

is the least for this ��6 � : .
Consider the following set of probabilistic preferences��6 � : : for a given F �7C #+4 ���
�5 % , and F � �"5 � F � , there are

exactly two classes of users, occurring with equal probabil-
ity, denoted by their distributions

H F �
 F � K and
H F �
 F �9K . The

following lemma is immediate:

Lemma 9 Given
�NC �

, the probability that a random edge
adjacent to

�
is inside

�
is F
� � � F

��
and the probability it is

a cross-edge is
� F � F � .

Using this, we can compute the expected utility for
NEIGHBOR for this ��6 � : . W.l.o.g. we consider a

H F ��
 F � K
user. This user may generate three types of edge: (i) a

� �
-

edge
�

with probability F
� �
. For this case the neighbor of

�
is in

� �
with probability F

� � �7F
��

which yields a utility of F � ,
and is in

���
with the remaining probability, yielding util-

ity F � ; (ii) a cross-edge with probability
� F � F � , for which

the utility is 6XF � � F � : � �7��5 � � ; and (iii) a
���

-edge
�

with
probability F

��
. Here the neighbor of

�
is in

� �
with proba-

bility F
� � �<F

��
yielding a utility of F � , and with the remaining

probability is in
� �

yielding utility F � . Summing these, we
obtain that

W�6 NEIGHBOR

 � : � �

� F � � 6 �: � F �� 6 �:

�GF � 6 �: F � 6 ��: � � F � � 6 �: F �� 6 �:J�
Using the fact W 6 OPT

 � :"� O � F � 6 ��: , we can show
W�6 NEIGHBOR

 � :$M 4 �
	 4��
�
W�6 OPT

 � : . C
We now show that the ��6 � : considered above is the worst
case for NEIGHBOR. More precisely, we can show

Lemma 10 For any set of preferences F ,
W�6 NEIGHBOR

 F : M W 6 NEIGHBOR

 � :I�

Proof: Consider the performance of NEIGHBOR on a pref-
erence F 6

� :
. Let

� L be the probability that a random edge
is a

� L -edge, and
��� � 5 � � � � � �

be the probabil-
ity of a cross edge. Let

�
denote the edge density. Let� � ��� � � 6 ��� � � � � :

be the probability that a neighbor
of a

� �
-edge is in

� �
, and likewise

� � ��� � � 6 ��� � � � � : be
the probability that a neighbor of a

� �
-edge is in

� �
. Then

we can write W�6 NEIGHBOR

 F : as

W�6 NEIGHBOR

 F : � �

�
� F � 6 �: 6 5 � F � 6 ��:@:

� 6 � F � 6 �: � 5:�� � F � 6 ��:
�
� � 6 5 �1F � 6 �:9:

��� �
Consider also the performance of neighbor on the symmet-
ric closure of F06

� :
, which is ��6 � : . Let � 1
 � 1 be the analogs

of �
 � with respect to ��6 � : . Note that � 1 � � 1 by the sym-
metry of ��6 � : . Using this, we can write

W�6 NEIGHBOR

 � : � �

�
� 1 6 � F � 6 ��: � 5: � � F � 6 ��: 6 5 � F � 6 �:9:I�

We now show that W 6 NEIGHBOR

 F :7M W�6 NEIGHBOR

 � : .
Combining the two previous equations, this leads to the fol-
lowing inequality:�

� 6
� F � 6 �: � 5�: � 1
	 �

�
� F � 6 �:

�
� � 6 5 ��F � 6 �:9:

� �

Converting this expression to central moments, taking � to
be the mean (over

�
) of F � 6 ��: , and 5 � to be the variance of

the same random variable, we get:

6 � � � 5�: � 1 � 6�5 � � � � : 6 � � � : ��6 � � � 5�: � �

Following the derivation of � and
�

above, we can simi-
larly derive the value of � 1 using an in-cluster density of
6 � � � � � : � � . Converting the resulting expression to central
moments allows us to derive the following useful equality:� 1 � ��� �D6 5 � � : � �

Using this substitution, and assuming � .� �
(the lemma

follows otherwise), the above inequality becomes:� 6 � � 5�: � 5 �

which is always true since � � 5

. C
Combining the performance of NEIGHBOR and VRC, we get
the following corollary, which asserts that even without the
knowledge of clusters, NEIGHBOR performs very well when
compared to VRC.

Corollary 11 For all preferences F , W�6 NEIGHBOR

 F : M

4 ��� � �
�
W 6 VRC

 F : .
4.2. The VOTING algorithm

The following VOTING algorithm is a generalization of
the NEIGHBOR algorithm:

Let � be the graph corresponding to the
problem instance. For a user

� L ’s sample� �@L�A �
 �@L�A � � , recommend an item �QL�A ! such that�QL�A ! is a neighbor of ��L�A � and �@L�A � in � with the
maximum multiplicity.

As in the proof of Theorem 8, we assume that the set of
probabilistic preferences is ��6 � : . It is easy to show that �
leads to the worst-case scenario for VOTING.

Let F D � � F
� � � F

��
 F D � � � F � F � . Then, note that for
� �

-
edge

�
, the probabilities that

�
has a neighbor of multiplicity� are respectively

F"D �
F D � � F D � and

F D �
F D � � F D � �

Let VOTING be an algorithm that votes for a neighbor of
multiplicity � . Now, we can do an analysis as before and
obtain the utility of VOTING to be:

W�6 VOTING

 F : � 6VF ! � � F"! � : F"D �

F"D � � F"D �
� 6VF

� � F � �1F � F
�� : F D �
F D � �1F D � � F � F � �

The following theorem shows the relationship between
VOTING and and the performance of OPT f .

Theorem 12 For any set of preferences F ,/
 `��� _ W 6 VOTING

 F : M � 6 � � � 5�: � W 6 OPT

 F :J�

Proof: Let � be the expected multiplicity of a neighbor, and
note that as � ' � , � ' � . Since F4D � M F D � , /
 ` � _ of
these quantities is

5
and 4 respectively. The theorem follows

by analyzing W�6 VOTING

 F : . C

Thus, the above theorem asserts that the performance of
VOTING approaches that of OPT f as � ' � .

Since VOTING is a generalization of NEIGHBOR, it is im-
portant to study the performance of VOTING as a function
of � . Suppose � � � 6 �

� ��� :
. Then with high probabil-

ity most nodes have at least one neighbor with multiplicity� 6 5 � % : . Thus,

Corollary 13 For any set of preferences F , if � � �
� ���

,
W�6 VOTING

 F : M W 6 VOTING
��� �
 F : .

5. Conclusions

In this paper, we introduce a framework for studying al-
gorithmic issues arising in recommendation systems. We
have isolated two modeling issues, namely, a model for user
utility and a model for user preferences as central issues
within this framework.

We study basic cases arising from a simple probabilistic
model for utility and user preferences. We show that these
cases provide the following interesting insights: (i) Recom-
mendation systems start being valuable with relatively little
data on each user. The value of this data is related to the
diversity of the interests of the user population. (ii) Sim-
ple algorithms are almost as effective as the best possible in
terms of utility.

Several issues remain open, most notably in extending
our analyses to the more general models suggested in Sec-
tion 2.2.

References

[1] R. B. Allen. User models: Theory, method and practice.
International Journal of Man-Machine Studies, 32:511–
543, 1990.

[2] M. J. Berry and G. Linoff. Data Mining Techniques.
John-Wiley, 1997.

[3] J. Bettman. An Information Processing Theory of Con-
sumer Choice. Addison-Wesley Publishing Company,
1979.

[4] R. C. Blattberg, R. Glazer, and J. D. C. Little, Eds.
The Marketing Information Revolution, Harvard Busi-
ness School Press, 1994.

[5] B. Bollobas. Random Graphs. Academic Press, NY,
1985.

[6] R. Boppana. Eigenvalues and graph bisection: An
average-case analysis, Proc. IEEE Symp. on Foundations
of Computer Science, 1987.

[7] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent semantic
analysis. Journal of the Society for Information Science,
41(6):391–407, 1990.

[8] Z. Drezner, Ed. Facility Location: A Survey of Applica-
tions and Methods, Springer, 1995.

[9] R. Glazer. Marketing in an information-intensive envi-
ronment: Strategic implications of knowledge as an as-
set, Journal of Marketing, 55:1–19, 1991.

[10] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35:12, pp. 51–60,
1992.

[11] G. Golub and C. F. Van Loan. Matrix Computations,
Johns Hopkins University Press, 1989.

[12] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Rec-
ommending and evaluating choices in a virtual commu-
nity of use. Proceedings of ACM CHI, pp. 194–201,
1995.

[13] D. L. Hoffman and T. P. Novak. Marketing in hy-
permedia computer-mediated environments: Conceptual
foundations. Journal of Marketing, 60:50–68, 1996.

[14] J. Howard. Consumer Behavior in Marketing Strategy,
Prentice Hall, Englewood Cliffs, NJ, 1989.

[15] J. Kleinberg, C. H. Papadimitriou, and P. Raghavan.
Segmentation problems. Proceedings of the ACM Sym-
posium on Theory of Computing, 1998.

[16] B. N. Miller, J. T. Riedl, and J. A. Konstan. Experi-
ences with GroupLens: Making usenet useful again. Pro-
ceedings of the USENIX Conference, 1997.

[17] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and
S. Vempala. Latent semantic indexing: A probabilistic
analysis. Proceedings of the ACM Symposium on Princi-
ples of Database Systems, 1998.

[18] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An Open Architecture for Collab-
orative Filtering of Netnews, Center for Coordination
Science, MIT Sloan School of Management Report WP
#3666–94, 1994.

[19] U. Shardanand and P. Maes. Social information filter-
ing: Algorithms for automating “word of mouth”, Pro-
ceedings of the ACM Conference on Human Factors in
Computing Systems, pp. 210–217, May 1995

[20] ACM SIGGROUP resource page on collaborative fil-
tering.
www.acm.org/siggroup/collab.html.

[21] L. G. Valiant. A theory of the learnable. CACM
27(11): 1134–1142, 1984.

[22] H. R. Varian. Resources on collaborative filtering.
www.sims.berkeley.edu/resources/collab/.

[23] H. R. Varian and P. Resnick, Eds. CACM Special issue
on recommender systems. CACM 40(3), 1997.

