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ABSTRACT
We define the balanced metric labeling problem, a general-
ization of the metric labeling problem, in which each la-
bel has a capacity, i.e., at most ` vertices can be assigned
to it. The balanced metric labeling problem is a general-
ization of fundamental problems in the area of approxima-
tion algorithms, e.g., arrangements and balanced partitions
of graphs. It is also motivated by resource limitations in
certain practical scenarios. We focus on the case where
the given metric is uniform and note that this case alone
encompasses various well-known graph partitioning prob-
lems. We present the first (pseudo) approximation algo-
rithm for this problem, achieving for any ε, 0 < ε < 1, an
approximation factor of O

(

ln n
ε

)

, while assigning at most

min
{

O(ln k)
1−ε

, ` + 1
}

(1 + ε) ` vertices to each label (k is the

number of labels). Our approximation algorithm is based
on a novel randomized rounding of a linear programming
formulation that combines an embedding of the graph in a
simplex together with spreading metrics and additional con-
straints that strengthen the formulation. Our randomized
rounding technique uses both a randomized metric decom-
position technique and a randomized label assignment tech-
nique. At the heart of our approach is the fact that only
limited dependency is created between the labels assigned
to different vertices, allowing us to bound the expected cost
of the solution and the number of vertices assigned to each
label, simultaneously. We note that the number of vertices
assigned to each label is bounded via a new inequality of
Janson [15] for tail bounds of (partly) dependent random
variables.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph
Labeling, Graph Algorithms
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1. INTRODUCTION
The metric labeling problem captures a wide variety of

classification problems that arise in computer vision and
other related areas. Typically, in a classification problem
one wishes to assign labels to objects such that some mea-
sure of the quality of the labeling is optimized. Metric label-
ing captures many classification problems where the measure
of the quality of the labeling depends not only on the cost
of assigning a label to an object, but also on pairwise rela-
tions between the classified objects. Formally, the input for
the metric labeling problem consists of an undirected graph
G = (V, E) with n vertices, a non-negative edge weight func-
tion w : E → R

+, a set L = {1, 2, . . . , k} of k labels, a
metric (L, dL) over the set of labels and a non-negative as-
signment cost function c : V × L → R

+. The goal is to
find a labeling of the vertices f : V → L that minimizes:
∑

u∈V c
(

u, f(u)
)

+
∑

(u,v)∈E w(u, v) · dL

(

f(u), f(v)
)

.

Kleinberg and Tardos [16] were the first to consider the
metric labeling problem in its full generality. They pre-
sented a 2-approximation for the uniform metric case and
an approximation of O(log k log log k) for general metrics us-
ing the probabilistic tree embedding technique [5, 4]. This
bound was recently improved to O(log k) [12]. We note that
several special cases of the metric labeling problem received
attention, e.g., [14, 6, 2]. Chuzhoy and Naor [7] showed that

metric labeling is Ω(log
1
2
−δ k)-hard to approximate under

the assumption that NP 6⊆ DTIME
(

npoly(log n)
)

. Chekuri

et al. [6] formulated a linear programming relaxation for
metric labeling, where each vertex is associated with a dis-
tribution over the label set L, i.e., an embedding in a k-
dimensional simplex, and distances are defined by an earth-
mover metric.

Metric labeling also generalizes some classical and ex-
tensively studied combinatorial optimization problems. In
the 0-extension problem, there is a special set of terminals
{t1, t2, . . . , tk}, where each terminal ti is a priori assigned
label i. There is a metric on the label set, however, the
assignment cost of labels to non-terminal vertices is zero.
An O(log k)-approximation algorithm for the problem was
given by [8] and later improved to an O(log k/ log log k)-
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approximation [11]. The special case of a uniform metric is
the well known multiway cut problem.

1.1 Balanced Metric Labeling
We introduce the balanced metric labeling problem in this

paper. In this problem, each label has a capacity, `, which
is an upper bound on the number of vertices that can be
assigned to it. The balanced metric labeling problem is a
natural generalization of several well known graph partition-
ing and arrangement problems. For example, the b-balanced
cut problem, 0 < b ≤ 1/2, asks for a minimum capacity cut
(S, V \ S) such that b · n ≤ |S| ≤ (1 − b) · n. Alternatively,
we can say that each vertex can be assigned to one of two
labels (at zero cost), indicating the side of the balanced cut
to which the vertex belongs. Setting ` = (1 − b)n, the re-
sulting labeling is indeed a b-balanced cut. The metric dL in
this case is the uniform metric, and the cost of the labeling
is the total weight of edges whose endpoints are in different
sides of the cut. Similarly, the k-way balanced partition-
ing problem, where the goal is to partition a graph into k
(almost) equal parts, is also a special case of the balanced
metric labeling problem. Here, |L| = k and the metric is
uniform.

In the linear arrangement problem, the goal is to embed a
graph onto the integral points of a straight line, while min-
imizing the sum of the lengths of the edges in the embed-
ding. This is a special case of the balanced metric labeling,
by setting L = {1, 2, . . . , n}, ` = 1, and letting dL be a
linear metric. Thus, the resulting labeling defines a linear
arrangement of the graph, and the cost of the labeling is the
total length of the edges in the embedding. It is important
to notice that any embedding of an undirected graph onto a
finite metric space, where the goal is to minimize the volume
of the embedding (total edge length in the embedding), is a
special case of the balanced metric labeling problem. Thus,
this problem encompasses various types of linear arrange-
ments and embeddings of graphs onto grids and meshes, in
any dimension.

An interesting application of our problem arises in the
design of wireless networks. Consider, for example, a GSM
network. A Base Transceiver Station (BTS) provides cov-
erage to mobile users in a cell. The BTS-s are further par-
titioned into clusters, where each cluster is controlled by a
Base Station Controller (BSC). Handover, the maintenance
of service to users moving between cells, is much simpler (or
cheaper) within a cluster. We assume that each BTS can
only be assigned to a subset of the BSC-s, and a weighted
graph is defined on the BTS-s, where edge weights corre-
spond to the traffic between pairs of BTS-s. Thus, viewing
the BSC-s as labels, where each BSC can control only a lim-
ited number of BTS-s, finding a minimum cost clustering
of the BTS-s is an instance of the balanced metric labeling
problem with a uniform metric and labeling costs belonging
to {0,∞}.

1.2 Our Results
We consider the balanced metric labeling problem with a

uniform metric. As already mentioned, this case by itself
is already a generalization of many partitioning problems.
We present the first (pseudo) approximation for this prob-
lem. For any 0 < ε < 1, we find an O

(

ln n
ε

)

-approximation,

such that there are at most min
{

O(ln k)
1−ε

, `+1
}

(1 + ε) ` ver-

tices assigned to each label. We note that for ` = O(1) or

k = O(1) (which is the case in many partitioning problems),
we obtain a constant multiplicative deviation in the number
of vertices that receive the same label. Compare our result
with the best known results for balanced graph partition-
ing: a pseudo-approximation was given by [17, 9], where the
cost is approximated by an O(log n) factor, and the mul-
tiplicative deviation in the number of vertices assigned to
a part (“label”) is a constant. Very recently, the O(log n)
factor was improved to O(

√
log n) [3]. A (true) O(log2 n)-

approximation algorithm for 2-way balanced cuts was given
by [13]. However, it does not seem that any of the above re-
sults can be naturally extended to handle assignment costs
of vertices to different parts (“labels”).

There are two main difficulties that we need to cope with
in order to approximate the balanced uniform metric label-
ing problem. First, there is no obvious way how to bound
the number of vertices assigned to a label in the approx-
imation algorithms developed for the (uncapacitated) uni-
form metric labeling problem, e.g. [16]. Second, it is not
clear how to incorporate label assignment costs with tech-
niques developed for approximating partitioning problems,
e.g., spreading metrics [9] and the technique of [3]. Metric
decomposition techniques yield a partitioning of the metric
into clusters with small radii, such that if the metric sat-
isfies some spreading constraints, this usually implies that
each cluster contains a small number of vertices. However,
in general, there may not always exist a label that can be
assigned to all vertices in a single cluster of the partition,
for example, if some labels cannot be assigned to certain
vertices (by setting the assignment cost to be ∞).

We formulate the balanced uniform metric labeling prob-
lem as a linear program combining the simplex embedding
approach [6, 16] together with the spreading metric ap-
proach [10, 9]. The simplex embedding approach can be
used to bound the assignment and edge costs, while the
spreading metric approach is useful for bounding the num-
ber of vertices assigned to the same label. However, the
combination of these two approaches is not enough and we
strengthen the relaxation by adding a new constraint which
can be viewed as a triangle inequality on the “closeness” of
vertices (see Section 3 and constraint (6) in the LP relax-
ation).

Our approximation algorithm combines in a novel way
randomized metric decomposition techniques and random-
ized label assignment techniques. This needs to be done in
a way that balances the dependencies between the labels
assigned to different vertices. If each vertex is assigned a
random label independently, then it is easy to bound the
number of vertices that are assigned to the same label, how-
ever, the expected cost of the labeling in this case can be
unbounded (compared with the LP). If the labels chosen for
the vertices are completely dependent (e.g., [16]), then it is
easy to bound the cost of the solution, however, there is no
way to bound the number of vertices that are assigned to
the same label. Additionally, one can find examples where
the algorithm of [16], in which all labels are dependent, as-
signs all vertices to the same label, even when adding ca-
pacity constraints to the relaxation of [16]. Therefore, it is
a challenging problem to achieve a poly-logarithmic approx-
imation factor while deviating as little as possible from the
capacities.

Hence, we present a novel approximation technique that
creates a delicate balance of dependencies, i.e., the label
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that a single vertex receives depends on only a limited num-
ber of other labels. This allows us to bound both the cost
of the labeling and the number of vertices assigned to each
label via a new inequality of Janson [15] for tail bounds of
(partly) dependent random variables. We achieve a logarith-
mic approximation factor and a low (i.e. logarithmic in k)
multiplicative deviation in the number of vertices assigned
to each label. We note that the deviation is larger than the
deviation achieved for partitioning problems [17, 9, 3], since
we have to cope with assignment costs in the range [0,∞),
instead of a fixed assignment cost of zero.

2. PRELIMINARIES
The input for the balanced uniform metric labeling prob-

lem consists of an undirected graph G = (V, E) with n ver-
tices, a non-negative edge weight function w : E → R

+,
a set L = {1, 2, . . . , k} of k labels, a non-negative assign-
ment cost function c : V × L → R

+, and a capacity pa-
rameter `. The goal is to find a labeling of the vertices f :
V → L that minimizes:

∑

u∈V c
(

u, f(u)
)

+
∑

(u,v)∈E w(u, v)·
dunif

(

f(u), f(v)
)

, such that ∀j ∈ L, |{u | f(u) = j}| ≤ `.
We denote the uniform metric by dunif , i.e., ∀i, j ∈ L, i 6= j,
dunif (i, j) = 1, and ∀i ∈ L, dunif (i, i) = 0.

We note that we can determine in polynomial time using
flow techniques whether a feasible solution having finite cost
exists for a given instance. We can assume that G is a
complete graph by setting the weight of all missing edges to
0. We use the following density function (similarly to [5]).

Definition 1. R ∼ Radius(ε), for r ∈
[

0, ε
1+ε

]

, if its

density is:

fR(r) =

(

n

n− 1

)

· 1 + ε

ε
ln n · n−r· 1+ε

ε .

Clearly, Radius(ε) is a valid probability measure for any
ε > 0.

Lemma 1. For any 0 ≤ r1 ≤ r2 ≤ ε
1+ε

,

Pr[0 ≤ R ≤ r1] =
n

n− 1
·
(

1− e−r1
1+ε

ε
ln n
)

.

Pr[r1 ≤ R ≤ r2] =
n

n− 1
·
(

1− e−(r2−r1) 1+ε
ε

ln n
)

·

e−r1
1+ε

ε
ln n.

Pr

[

r2 ≤ R ≤ ε

1 + ε

]

=
n

n− 1
·
(

e−r2
1+ε

ε
ln n − 1

n

)

.

3. THE RELAXATION
We formulate the balanced uniform metric labeling prob-

lem as a linear program that combines spreading constraints
with an embedding in a k-dimensional simplex, in which dis-
tances are bounded from below by the variation distance (`1-
distance), together with some additional new constraints.

In our formulation, each vertex is associated with a prob-
ability measure over the label set L, similarly to [6, 16].
Hence, vertex v is associated with variables ϕ(v, j), 1 ≤
j ≤ k. The probability measure of v over L is a vector
ϕ(v) =

(

ϕ(v, 1), ϕ(v, 2), . . . , ϕ(v, k)
)

(see constraints (1)).
Furthermore, we add capacity constraints (see constraints
(2)) which guarantee that each label is not assigned to more
than ` vertices.

We introduce a set of variables, cj(u, v), 1 ≤ j ≤ k, u, v ∈
V , where cj(u, v) measures the “closeness” of ϕ(u) and ϕ(v)
with respect to label j (see constraints (3)). Each edge (u, v)
is also associated with a distance d(u, v) which is related
to the probability measures via the closeness variables (see
constraints (4)). The variation distance of the points ϕ(v),
v ∈ V , in the k-dimensional simplex is used to bound d from
below. It is important to notice that d is a variable of the LP
relaxation and not part of the input. Notice that constraints
(1), (3) and (4) are equivalent to the relaxation of [16] for
the uncapacitated uniform case.

The spreading constraints (see constraints (5)) imply that
each sphere of bounded radius does not contain too many
vertices. We strengthen the relaxation by adding a new
constraint that can intuitively be thought of as a “trian-
gle inequality” constraint for the closeness variables. We
call these constraints closeness triangle inequality (see con-
straints (6)). These constraints are important for bound-
ing the separation cost of neighboring vertices and we note
that they can be made linear. Additionally, these con-
straints (with the variation distance constraints (4)) imply
that (V, d) is a semi-metric (see Lemma 2).

min
∑

v∈V

∑

j∈L

c(v, j) · ϕ(v, j) +
∑

u,v∈V

w(u, v) · d(u, v) s.t.

∑

j∈L

ϕ(v, j) = 1

∀v ∈ V (probability measure) (1)
∑

v∈V

ϕ(v, j) ≤ `

∀j ∈ L (capacity) (2)

cj(u, v) ≤ ϕ(u, j), ϕ(v, j)

∀u, v ∈ V, ∀j ∈ L (closeness) (3)

d(u, v) = 1−
∑

j∈L

cj(u, v)

∀u, v ∈ V (variation distance) (4)
∑

v∈S

d(u, v) ≥ |S| − `

∀S ⊆ V, ∀u ∈ S (spreading) (5)
∑

j∈L

∣

∣cj(u, v)− cj(u, w)
∣

∣ ≤ 1−
∑

j∈L

cj(v, w)

∀u, v, w ∈ V (closeness ∆−inequal.) (6)

ϕ(v, j) ≥ 0, cj(u, v) ≥ 0, d(u, v) ≥ 0

∀u, v ∈ V, ∀j ∈ L

Lemma 2. For any feasible solution for the above pro-
gram, (V, d) is a semi-metric.

Proof. For every u, v ∈ V , d(u, v) ≥ 0. Thus, we only
need to prove the triangle inequality. For every u, v, w ∈ V ,
according to constraint (6) (closeness ∆-inequality):

∑

j∈L

∣

∣cj(u, w)− cj(u, v)
∣

∣ ≤ 1−
∑

j∈L

cj(w, v).

Removing the absolute value from the left hand side of the
equation can only decrease its value, therefore:

∑

j∈L

(

cj(u, w)− cj(u, v)
)

≤ 1−
∑

j∈L

cj(w, v).
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Figure 1: Variable Assignments.

Rearranging terms, we get that:

1−
∑

j∈L

cj(u, v) ≤ 1−
∑

j∈L

cj(u, w) + 1−
∑

j∈L

cj(w, v).

Applying constraint (4) (variation distance) yields the trian-
gle inequality: d(u, v) ≤ d(u, w) + d(w, v), thus completing
the proof.

Lemma 3. The value of an optimal solution for the above
program is a lower bound on the cost of an optimal solution
to the balanced uniform metric labeling problem.

Proof. Given an instance of the balanced uniform metric
labeling problem, we show that it defines a feasible solution
to the linear program, such that the objective function value
of the linear program is equal to the cost of the labeling f .

Let us define a solution as follows. For each vertex v, set
ϕ(v, f(v)) = 1 and ϕ(v, j) = 0 for every j 6= f(v). Next, set
for every two vertices u, v ∈ V and every j ∈ L, cj(u, v) =
min{ϕ(u, j), ϕ(v, j)}, and d(u, v) = 1−∑j∈L cj(u, v). Thus,

if f(u) = f(v), then cj(u, v) = 0 for every j 6= f(u) and
cf(u)(u, v) = 1. Otherwise, f(u) 6= f(v) and cj(u, v) = 0 for
every j ∈ L. The assignments can be viewed in Figure 1.

Clearly, this solution satisfies constraints (3) (closeness
constraints), (4) (variation distance constraints), and also
constraints (1) (probability measure constraints). Since the
labeling f does not assign more than ` vertices to each label,
constraints (2) (capacity constraints) are also satisfied. Note
that d(u, v) = 0 if f(u) = f(v), and d(u, v) = 1 otherwise.
Let us now focus on constraints (5) (spreading constraints).
Let S ⊆ V and u ∈ S. Since f assigns at most ` vertices
to each label j ∈ L, in particular for label f(u) we get that:
|{x ∈ S | f(u) 6= f(x)}| ≥ |S| − `. For every v ∈ {x ∈
S | f(u) 6= f(x)}, d(u, v) = 1, hence the solution satisfies
constraints (5).

Let us now focus on constraints (6) (closeness ∆-inequality
constraints). If v and w are assigned the same label (f(v) =
f(w)), then d(v, w) = 0 (or equivalently

∑

j∈L cj(v, w) = 1)

and cj(u, v) = cj(u, w), ∀j ∈ L. Thus, the solution satisfies
the constraint in this case. Otherwise, v and w are assigned
different labels (f(v) 6= f(w)), therefore d(v, w) = 1 (or
equivalently

∑

j∈L cj(v, w) = 0). If u is assigned to the

same label as v or w (f(u) ∈ {f(v), f(w)}), the left hand
side of the constraint is equal to 1 and the solution satisfies
the constraint. If u is not assigned the same label as v and
w (f(u) /∈ {f(v), f(w)}), the left hand side of the constraint
equals 0, and the solution satisfies the constraint. Thus, we
conclude that constraints (6) are satisfied, and hence the
solution is feasible.

We now examine the value of the solution. Clearly, for
each vertex v ∈ V ,

∑

j∈L c(v, j)ϕ(v, j) = c
(

v, f(v)
)

. Since

d(u, v) = 0 if f(u) = f(v), and d(u, v) = 1 otherwise, we
conclude that ∀u, v ∈ V ,

w(u, v)d(u, v) = w(u, v)dunif (f(u), f(v)).

Therefore, the value of the objective function is precisely the
cost of the labeling, completing the proof.

Lemma 4. An optimal solution for the above program is
computable in polynomial time.

From the proof of Lemma 2 it follows that the closeness
∆-inequality constraints (constraint (6)), together with the
variation distance constraints (constraint (4)), imply the tri-
angle inequality for d. An interesting question is whether
the converse is also true, i.e., can we prove that any feasi-
ble solution to the linear program that satisfies the triangle
inequality constraints for d together with all the other con-
straints, except for constraint (6), also satisfies the closeness
∆-inequality.

The answer to this question is negative as we give an ex-
ample in which the triangle inequality for d is satisfied, yet
the closeness ∆-inequality is not satisfied. Consider a graph
with only three vertices u, v and w, two labels, and ca-
pacity ` = 2. Set the following distributions on the labels:
ϕ(u) = ϕ(v) = ϕ(w) = ( 1

2
, 1

2
). Set the closeness variables in

the following way: c1(u, v) = 1
2
, c2(u, v) = 0, c1(u, w) = 0,

c2(u, w) = 1
2
, c1(v, w) = 1

4
and c2(v, w) = 1

4
. It can be

verified that all the constraints, except for the closeness ∆-
inequality, are satisfied. According to constraint (4) (varia-
tion distance), d(u, v) = d(u, w) = d(v, w) = 1

2
. Clearly, the

triangle inequality for d is satisfied. However, the closeness
∆-inequality is not satisfied, since:

2
∑

j=1

∣

∣cj(u, v)−cj(u, w)
∣

∣ = 1 >
1

2
= 1−

2
∑

j=1

cj(v, w) = d(v, w).

This implies that the closeness ∆-inequality constraint is
stronger than an explicit constraint stating that d satisfies
the triangle inequality.

4. THE APPROXIMATION ALGORITHM
Our approximation algorithm combines randomized met-

ric decomposition techniques with randomized label assign-
ment techniques. We prove that our technique creates lim-
ited dependencies between the labels that vertices are as-
signed to. This enables us to bound both the cost of the
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solution and the number of vertices assigned to the same
label, simultaneously.

Our approximation algorithm first assigns an initial la-
beling denoted by f∗, which we call a root labeling. This
is done by a random procedure RootLabel and we defer
its description to Section 5.2. The only property we need is
that for every v ∈ V , f∗(v) is a random variable satisfying:

Pr[f∗(v) = j] = ϕ(v, j) , ∀v ∈ V, ∀j ∈ L. (7)

We do not assume that the random variables {f∗(v)}v∈V

generated by RootLabel are necessarily independent. How-
ever, we assume that the random variables {f∗(v)}v∈V are
independent of any other random choices made during our
algorithm. We note that Property (7) is required for bound-
ing the expected cost of the solution found by our approxi-
mation algorithm.

Our approximation algorithm, ApproxLabel, assigns la-
bels to vertices in iterations. ApproxLabel conducts a sin-
gle iteration for each vertex, where the vertex that corre-
sponds to an iteration is called the root vertex of that it-
eration. We assume that the root vertices are determined
in each iteration according to a prespecified ordering of the
vertices V = {u1, u2, . . . , un}. This order is arbitrary and
independent of any random choice made throughout the al-
gorithm. In each iteration, the root label of that iteration’s
root vertex is assigned to a random (possibly empty) subset
of vertices that are still unassigned to any label.

Let us consider iteration i with root vertex ui. The ran-
dom subset chosen in such an iteration is constructed from
the intersection of two other random subsets. The first ran-
dom subset consists of all vertices that belong to a sphere
of radius R around ui, where R ∼ Radius(ε). Hence, the
first subset is obtained via a randomized metric decompo-
sition technique. The second subset consists of all vertices
that are “close” to ui with respect to the root label of ui,
i.e. f∗(ui). Vertex v is said to be “close” to vertex ui

with respect to label f∗(ui), if cf∗(ui)(ui, v) ≥ α, where
α ∼ Unif [0, ϕ(ui, f

∗(ui))]. Recall that:

cf∗(ui)(ui, v) ≤ min{ϕ(ui, f
∗(ui)), ϕ(v, f∗(ui))},

and the variable cf∗(ui)(ui, v) denotes the “closeness” of ver-
tices v and ui in terms of label f∗(ui). Hence, the second
subset is obtained via a randomized label assignment tech-
nique. Thus, the random subset chosen in iteration i is the
following intersection of two random subsets:

{x | d(ui, x) ≤ R} ∩
{

x | cf∗(ui)(ui, x) ≥ α
}

.

The subsets can be viewed in Figure 2. We assume that all
random variables chosen by ApproxLabel are independent
of each other. That is, for each iteration, the values of R and
α’s are independent of each other, and are also independent
of any other value of R and α chosen in any other iteration.
We are now ready to state the approximation algorithm.
We assume that an optimal solution for the linear program
of the relaxation has been computed. At the end of each
iteration we denote by V ′ the subset of vertices that are
still not assigned to any label.

Algorithm ApproxLabel

1. f∗ ←RootLabel({ϕ(u)}u∈V ).
2. V ′ ← V .
3. For i = 1 to n do:
4. R ∼ Radius(ε) and α ∼ Unif [0, ϕ (ui, f

∗(ui))].
5. Si ← {x | d(ui, x) ≤ R} ∩

{

x | cf∗(ui)(ui, x) ≥ α
}

.
6. For each v ∈ V ′ ∩ Si, set f(v)← f∗(ui).
7. V ′ ← V ′ \ Si.
8. Output f .

Lemma 5. All vertices are labeled by ApproxLabel.

Proof. For every v ∈ V , d(v, v) = 0. Hence, cj(v, v) =
ϕ(v, j) for every j ∈ L, due to constraints (3) (closeness con-
straints), (4) (variation distance constraints), and (1) (prob-
ability measure constraints). Thus, ui ∈ {x | d(ui, x) ≤ R}∩
{

x | cf∗(ui)(ui, x) ≥ α
}

, for any possible value of R, i, α,
and f∗(ui). Hence, every ui is assigned to a label no later
than iteration i.

5. ALGORITHM ANALYSIS
At the heart of the analysis of ApproxLabel is a proof

that limited dependency between the labels exists, i.e., the
label that a vertex receives depends on only a limited num-
ber of other labels. This allows us to simultaneously bound
both the cost of the solution and the number of vertices as-
signed to each label. We show that the expected cost of
the labeling is at most O

(

log n

ε

)

times the value of an op-
timal solution. We can prove this bound despite the lack
of “full” dependency among the labels assigned to vertices
(as in [16]). We note that proving this bound requires
at least a limited level of dependency. We show that at

most min
{

O(log k)
1−ε

, ` + 1
}

(1 + ε)` vertices are assigned to

the same label. We are able to prove this bound, despite
the lack of independence between the labels assigned to ver-
tices, via a new inequality of Janson [15] for tail bounds of
(partly) dependent random variables.

5.1 Approximation Factor
We bound the expected cost of the solution found by Ap-

proxLabel in two stages. First, we show that the separation
cost of adjacent vertices is at most O

(

ln n
ε

)

times the sep-
aration cost of these vertices in the relaxation. Second, we
show that the expected assignment cost of labels to vertices
is at most 1 + ε times the assignment cost of labels to ver-
tices in the relaxation. The general method used for proving
these bounds is somewhat similar to a method used in [5],
though in our case the analysis is much more involved, since
each random subset chosen is constructed from two different
random subsets. We use the following notations (as in [5])

to simplify the presentation: d̄(u, v) = min
{

ε
1+ε

, d(u, v)
}

,

and τ = 1+ε
ε
· ln n.

Expected Separation Cost of Neighboring Vertices.

Define the following events for every u, v ∈ V :

• A(u, v) - Vertices u and v are assigned to labels at
different iterations.

• Bi(u, v) - During iteration i, exactly one of u and v is
assigned to a label.

• Ci(u, v) - At the end of iteration i, neither u nor v are
assigned to a label.
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(iii) Intersection of both

random subsets.u with respect to the metric d.
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www

(i) u,x,y and z are close to (ii) u,y,z and w are close to

u with respect to u’s root label.

Figure 2: Iteration with root u. Assume f∗(u) is denoted by the black color.

Consider an iteration i where ui is the root and in which
Pr[Ci−1(u, v)] > 0, and assume without loss of generality
that d̄(ui, u) ≤ d̄(ui, v). Therefore,

• Pr[Bi(u, v) | Ci−1(u, v)] = Pr
[

d̄(ui, u) ≤ R ≤ d̄(ui, v)
]

·

Pr
[

cf∗(ui)(ui, u) ≥ α
]

+ Pr

[

d̄(ui, v) ≤ R ≤ ε

1 + ε

]

·

Pr
[
∣

∣{u, v} ∩
{

x | cf∗(ui)(ui, x) ≥ α
}
∣

∣ = 1
]

• Pr[Ci(u, v) | Ci−1(u, v)] = Pr
[

0 ≤ R ≤ d̄(ui, u)
]

+

Pr
[

d̄(ui, u) ≤ R ≤ d̄(ui, v)
]

· Pr
[

cf∗(ui)(ui, u) < α
]

+

Pr

[

d̄(ui, v) ≤ R ≤ ε

1 + ε

]

·

Pr
[
∣

∣{u, v} ∩
{

x | cf∗(ui)(ui, x) ≥ α
}
∣

∣ = 0
]

.

Lemma 6. For every iteration 1 ≤ i ≤ n and any pair of
vertices u, v ∈ V :

(a) Pr
[

cf∗(ui)(ui, u) ≥ α
]

= 1− d(ui, u).

(b) Pr
[
∣

∣{u, v} ∩ {x | cf∗(ui)(ui, x) ≥ α}
∣

∣ = 1
]

≤ d(u, v).

Proof. To prove (a), we obtain from Property (7), con-
straints (3) (closeness constraints), (4) (variation distance),
and the fact that α ∼ Unif [0, ϕ(ui, f

∗(ui))]:

Pr
[

cf∗(ui)(ui, u) ≥ α
]

=
∑

j∈L

Pr
[

cf∗(ui)(ui, u) ≥ α
∣

∣ f∗(ui) = j] · Pr[f∗(ui) = j] =

∑

j∈L

cj(ui, u)

ϕ(ui, j)
ϕ(ui, j) = 1− d(ui, u).

To prove (b), we obtain from Property (7), constraints (3)
(closeness constraints), (4) (variation distance), (6) (close-
ness ∆-inequality), and from α ∼ Unif [0, ϕ(ui, f

∗(ui))]:

Pr
[
∣

∣{u, v} ∩ {x | cf∗(ui)(ui, x) ≥ α}
∣

∣ = 1
]

=
∑

j∈L

{

Pr
[

∣

∣{u, v} ∩
{

x | cf∗(ui)(ui, x) ≥ α
}
∣

∣ = 1
∣

∣

∣

∣

∣

∣
f∗(ui) = j

]

· Pr[f∗(ui) = j]
}

=

∑

j∈L

|cj(ui, u)− cj(ui, v)|
ϕ(ui, j)

· ϕ(ui, j) ≤

1−
∑

j∈L

cj(u, v) = d(u, v).

Clearly, for every two vertices u, v ∈ V , Pr[C0(u, v)] = 1,
Pr[Cn(u, v)] = 0 (since, at the end all vertices are labeled),

and if there is an iteration i∗ such that Pr[Ci∗(u, v)] = 0,
then for every iteration i > i∗: Pr[Ci(u, v)] = 0. Define
for every u, v ∈ V , i∗(u, v) = argmini {Pr[Ci(u, v)] = 0}.
Obviously, the following reverse recursive formula on the
probability Pr[A(u, v) | Ci−1(u, v)] holds for every 1 ≤ i ≤
i∗(u, v)− 1:

Pr[A(u, v) | Ci−1(u, v)] = Pr[Bi(u, v) | Ci−1(u, v)] +

Pr[Ci(u, v) | Ci−1(u, v)] · Pr[A(u, v) | Ci(u, v)].

The following lemma is crucial for the analysis of the ap-
proximation factor as it bounds the expected separation cost
of adjacent vertices. We prove this lemma by reverse in-
duction on the number of iterations, starting with iteration
i∗(u, v), and using the reverse recursive formula on the prob-
ability Pr[A(u, v) | Ci−1(u, v)].

Lemma 7. For every u, v ∈ V , and every 1 ≤ i ≤ i∗(u, v),

Pr[A(u, v) | Ci−1(u, v)] ≤ d(u, v) (1 + ε + τ)
(

2n
n−1
− i

n−1

)

.

Proof. We prove the lemma by reverse induction on the
number of iterations.
Basis: Consider iteration i∗(u, v). According to the defini-
tion of i∗(u, v), if at the beginning of this iteration neither
u nor v are assigned to any label, then at the end of the it-
eration, at least one of them must be assigned to a label.
Assuming without loss of generality that d(ui∗(u,v), u) ≤
d(ui∗(u,v), v), it must be the case that d(ui∗(u,v), u) = 0.
Otherwise, there is a positive probability that u is not as-
signed to a label in iteration i∗(u, v). Since d(ui∗(u,v), u) ≤
d(ui∗(u,v), v), this implies that Pr[Ci∗(u,v)(u, v)] > 0, contra-
dicting the definition of i∗(u, v). Therefore,

Pr[A(u, v) | Ci∗(u,v)−1] = Pr[0 ≤ R ≤ d̄(ui∗(u,v), v)]+

Pr[d̄(ui∗(u,v), v) ≤ R ≤ ε

ε + 1
]·

Pr[cf∗(ui∗(u,v))
(ui∗(u,v), v) < α]

By Lemma 1, Lemma 6, the fact that 1−e−x ≤ x, and since
d̄(ui∗(u,v), v) ≤ d(ui∗(u,v), v), we obtain that:

Pr[A(u, v) | Ci∗(u,v)(u, v)] ≤

d(ui∗(u,v), v) · n

n− 1
·
(

τ + e−d̄(ui∗(u,v),v)τ − 1

n

)

≤

d(ui∗(u,v), v) · n

n− 1
· (1 + ε + τ).

If d(ui∗(u,v), u) = 0, then d(ui∗(u,v), v) = d(u, v) from the
fact that d satisfies the triangle inequality (see Lemma 2).
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Additionally, i∗(u, v) ≤ n, hence:

Pr[A(u, v) | Ci∗(u,v)−1(u, v)] ≤

d(u, v) (1 + ε + τ)

(

2n

n− 1
− i∗(u, v)

n− 1

)

.

Step: Assume correctness for i+1, and assume without loss
of generality that d̄(ui, u) ≤ d̄(ui, v). If d̄(ui, u) = ε

1+ε
, then

Pr[Bi(u, v) | Ci−1(u, v)] = 0 and Pr[Ci(u, v) | Ci−1(u, v)] =
1. Therefore, by the recursive formula we obtain that:

Pr[A(u, v) | Ci−1(u, v)] = Pr[A(u, v) | Ci(u, v)],

and the lemma follows by the induction hypothesis for i+1.
Otherwise, d(ui, u) < ε

1+ε
. By the induction hypothesis for

i + 1 and the recursive formula:

Pr[A(u, v) | Ci−1(u, v)] ≤ Pr[Bi(u, v) | Ci−1(u, v)]+

Pr[Ci(u, v) | Ci−1(u, v)]d(u, v) (1 + ε + τ)
2n− i− 1

n− 1

By setting the value of Pr[Bi(u, v) | Ci−1(u, v)], setting the
value of Pr[Ci(u, v) | Ci−1], by Lemma 1, Lemma 6, and by
the fact that:

Pr
[
∣

∣{u, v} ∩
{

x | cf∗(ui)(ui, x) ≥ α
}
∣

∣ = 0
]

≤
Pr[cf∗(ui)(ui, u) < α],

we obtain that:

Pr[A(u, v) | Ci−1(u, v)] ≤
(

n

n− 1

)

·
{

(

1− e−(d̄(ui,v)−d̄(ui,u))τ
)

e−d̄(ui,u)τ (1− d(ui, u)) +

(

e−d̄(ui,v)τ − 1

n

)

d(u, v) +

[

(

1− e−d̄(ui,u)τ
)

+

(

1− e−(d̄(ui,v)−d̄(ui,u))τ
)

e−d̄(ui,u)τd(ui, u)+
(

e−d̄(ui,v)τ − 1

n

)

d(ui, u)

]

·

d(u, v) (1 + ε + τ)

(

2n

n− 1
− i + 1

n− 1

)

}

.

Since 1 − e−x ≤ x, and d̄ satisfies the triangle inequality
(this is true since d satisfies the triangle inequality, Lemma
2), we obtain that:

Pr[A(u, v) | Ci−1(u, v)] ≤ n

n− 1
·

{

d̄(u, v)τe−d̄(ui,u)τ · (1− d(ui, u)) +

(

e−d̄(ui,v)τ − 1

n

)

· d(u, v)+

[

1− e−d̄(ui,u)τ + d(ui, u) ·
(

e−d̄(ui,u)τ − 1

n

)]

·

d(u, v) (1 + ε + τ)

(

2n

n− 1
− i + 1

n− 1

)

}

.

Recall that d(ui, u) < ε
1+ε

, thus: (1 + ε) (1− d(ui, u)) > 1.

Since d̄(u, v) ≤ d(u, v), ∀u, v ∈ V , and d̄(ui, u) ≤ d̄(ui, v),

we can conclude that:

Pr[A(u, v) | Ci−1(u, v)] ≤ d(u, v)

n− 1
· τ · (1− d(ui, u)) +

n

n− 1
· d(u, v) (1− d(ui, u)) ·

(τ + 1 + ε) ·
(

e−d̄(ui,u)τ − 1

n

)

+

[

n

n− 1
d(ui, u)

(

e−d̄(ui,u)τ − 1

n

)

+

n

n− 1

(

1− e−d̄(ui,u)τ
)

]

·

d(u, v) (1 + ε + τ)
2n− i− 1

n− 1

Since,

n

n− 1

[

1− e−d̄(ui,u)τ + d(ui, u)

(

e−d̄(ui,u)τ − 1

n

)]

≤ 1,

and τ(1− d(ui, u)) ≤ (1 + ε + τ):

Pr[A(u, v) | Ci−1(u, v)] ≤ d(u, v) (τ + 1 + ε) ·
[

(d(ui, u) + 1− d(ui, u))
n

n− 1

(

e−d̄(ui,u)τ − 1

n

)

+

n

n− 1

(

1− e−d̄(ui,u)τ
)

]

+

d(u, v)

(

n− i

n− 1

)

(1 + ε + τ) +
d(u, v)

n− 1
(1 + ε + τ)

Notice that:

[

(d(ui, u) + 1− d(ui, u))
n

n− 1

(

e−d̄(ui,u)τ − 1

n

)

+

n

n− 1

(

1− e−d̄(ui,u)τ
)

]

= 1.

Therefore,

Pr[A(u, v) | Ci−1(u, v)] ≤

d(u, v) (τ + 1 + ε)

[

1 +
n− i

n− 1
+

1

n− 1

]

=

d(u, v) (τ + 1 + ε)

(

2n

n− 1
− i

n− 1

)

Expected Assignment Cost of Labels to Vertices. We
now bound the assignment cost of labels to vertices. Define
the following events for every v ∈ V and j ∈ L:

• A(v, j) - Vertex v is assigned to label j.

• Bi(v, j) - During iteration i, v is assigned to label j.

• Ci(v) - At the end of iteration i, v is not assigned to
any label.
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Consider an iteration i where Pr[Ci−1(v)] > 0. Then,

• Pr[Bi(v, j) | Ci−1(v)] = Pr

[

d̄(ui, v) ≤ R ≤ ε

1 + ε

]

·

Pr
[(

cf∗(ui)(ui, v) ≥ α
)

∧ (f∗(ui) = j)
]

• Pr[Ci(v) | Ci−1(v)] = Pr
[

0 ≤ R ≤ d̄(ui, v)
]

+

Pr

[

d̄(ui, v) ≤ R ≤ ε

1 + ε

]

· Pr
[

cf∗(ui)(ui, v) < α
]

.

Lemma 8. For every iteration 1 ≤ i ≤ n, every label j ∈
L, and every vertex v ∈ V :

Pr
[(

cf∗(ui)(ui, v) ≥ α
)

∧ (f∗(ui) = j)
]

= cj(ui, v).

Proof. It follows from Property (7), from constraint (3)
(closeness constraints), and the additional fact that the dis-
tribution of α is Unif [0, ϕ(ui, f

∗(ui))], that:

Pr
[

(

cf∗(ui)(ui, v) ≥ α
)

∧
(

f∗(ui) = j
)

]

=

Pr
[

cf∗(ui)(ui, v) ≥ α | f∗(ui) = j
]

· Pr [f∗(ui) = j] =

cj(ui, v)

ϕ(ui, j)
· ϕ(ui, j) = cj(ui, v).

Clearly, for every v ∈ V , Pr[C0(v)] = 1, Pr[Cn(v)] = 0
(since, at the end all vertices are labeled), and if there is
an iteration i∗ such that Pr[Ci∗(v)] = 0, then for every it-
eration i > i∗: Pr[Ci(v)] = 0. Define for every v ∈ V ,
i∗(v) = argmini {Pr[Ci(v)] = 0}. Obviously, the following
reverse recursive formula on Pr[A(v, j) | Ci−1(v)] holds for
every 1 ≤ i ≤ i∗(v)− 1:

Pr[A(v, j) | Ci−1(v)] = Pr[Bi(v, j) | Ci−1(v)]+

Pr[Ci(v) | Ci−1(v)] · Pr[A(v, j) | Ci(v)].

The following lemma is crucial for the analysis of the ap-
proximation factor as it bounds the expected assignment
cost of labels to vertices. We prove this lemma by reverse
induction on the number of iterations, starting with itera-
tion i∗(v), and using the reverse recursive formula on the
probability Pr[A(v, j) | Ci−1(v)].

Lemma 9. For every v ∈ V , every 1 ≤ i ≤ i∗(v), and
every j ∈ L, Pr[A(v, j) | Ci−1(v)] ≤ (1 + ε)ϕ(v, j).

Proof. We prove the lemma by reverse induction on the
number of iterations.
Basis: Consider iteration i∗(v). If v is still not assigned to
a label at the beginning of this iteration, then v must be as-
signed to a label during this iteration. Thus, d(ui∗(v), v) = 0
and cj′(ui∗(v), v) = ϕ(ui∗(v), j

′) = ϕ(v, j′) for every j′ ∈ L.
If this is not the case, then there is a positive probability
that v is not assigned to a label in iteration i∗(v), implying
that Pr[Ci∗(v)] > 0, contradicting the definition of i∗(v).
Hence, Pr[A(v, j) | Ci∗(v)−1] = ϕ(ui∗(v), j) = ϕ(v, j) ≤
(1 + ε)ϕ(v, j).
Step: Assume correctness for i + 1. If d̄(ui, v) = ε

1+ε
, then

Pr[Bi(v, j) | Ci−1(v)] = 0 and Pr[Ci(v) | Ci−1(v)] = 1.
Therefore, by the recursive formula we obtain that:

Pr[A(v, j) | Ci−1(v)] = Pr[A(v, j) | Ci(v)],

and the lemma follows by the induction hypothesis for i+1.
Otherwise, d(ui, v) < ε

1+ε
. By the induction hypothesis

for i + 1 and the recursive formula: Pr[A(v, j) | Ci−1(v)] ≤

Pr[Bi(v, j) | Ci−1(v)]+Pr[Ci(v) | Ci−1(v)]·(1+ε)ϕ(v, j). By
setting the value of Pr[Bi(v, j) | Ci−1(v)], setting the value
of Pr[Ci(v) | Ci−1(v)], by Lemma 8, and by Lemma 6, we
obtain that:

Pr[A(v, j) | Ci−1(v)] ≤ Pr

[

d̄(ui, v) ≤ R ≤ ε

1 + ε

]

cj(ui, v)+

{

Pr

[

d̄(ui, v) ≤ R ≤ ε

1 + ε

]

d(ui, v)+

Pr[0 ≤ R ≤ d̄(ui, v)]

}

(1 + ε)ϕ(v, j).

Recall that d(ui, v) < ε
1+ε

, thus, (1 + ε) (1− d(ui, v)) > 1.

By constraint (3) (closeness constraint), cj(ui, v) ≤ ϕ(v, j).
Therefore, we conclude:

Pr[A(v, j) | Ci−1(v)] ≤

Pr

[

d̄(ui, v) ≤ R ≤ ε

1 + ε

]

(1 + ε) (1− d(ui, v)) ϕ(v, j)+

{

Pr

[

d̄(ui, v) ≤ R ≤ ε

1 + ε

]

d(ui, v)+

Pr[0 ≤ R ≤ d̄(ui, v)]

}

· (1 + ε)ϕ(v, j) = (1 + ε)ϕ(v, j).

Completing the Analysis. Denote by OPT the cost of
an optimal labeling of the balanced uniform metric labeling
problem.

Theorem 10. The expected cost of a solution found by

ApproxLabel is at most:
(

1+ε
ε

ln n + 1 + ε
)

(

2n
n−1

)

·OPT .

Proof. Define the following random variables for every
u, v ∈ V and every j ∈ L:

• Yu,v - Indicator for the event that vertices u and v are
assigned to different labels by ApproxLabel;

• Yv,j - Indicator for the event that v is assigned to label
j by ApproxLabel.

By Lemma 7,

E [Yu,v] ≤ Pr[A(u, v)|C0(u, v)]

≤ (τ + 1 + ε)

(

2n

n− 1

)

d(u, v),

and by Lemma 9,

E [Yv,j ] = Pr[A(v, j)|C0(v)] ≤ (1 + ε) ϕ(v, j).

Hence, the expected cost of the solution found by Approx-

Label is:

E

[

∑

v∈V

∑

j∈L

c(v, j)Yv,j

]

+ E

[

∑

u,v∈V

w(u, v)Yu,v

]

≤

(

1 + ε

ε
ln n + 1 + ε

)(

2n

n− 1

)

·
(

∑

v∈V

∑

j∈L

c(v, j)ϕ(v, j) +
∑

u,v∈V

w(u, v)d(u, v)

)

.

The proof is completed using Lemma 3.
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5.2 Bounding The Number of Vertices As-
signed to a Label

We present two upper bounds on the number of vertices
assigned to a single label. Each upper bound corresponds
to a different RootLabel procedure that satisfies Property
(7). Neither of the two upper bounds is strictly better than
the other, thus one can take the better of the two bounds
for each instance.

As stated earlier, spreading constraints play a crucial role
in the proof of an upper bound on the number of vertices
that are assigned to the same label. We need the following
lemma for both upper bounds, since it gives a lower bound
on the diameter of a “large” subset of vertices.

Lemma 11. Assume (V, d) is a semi-metric that satisfies
the spreading constraints (5). Then, for every S ⊆ V such
that |S| > γ` (γ > 1) and every u ∈ S, there exists a vertex
v ∈ S such that d(u, v) > 1− 1

γ
.

Proof. Let S ⊆ V such that |S| > γ` (γ > 1) and
u ∈ S. According to constraints (5),

∑

v∈S d(u, v) ≥ |S|− `.

Therefore, there exists v ∈ S such that d(u, v) ≥ 1 − `
|S|

.

Since |S| > γ`, we obtain that d(u, v) > 1− 1
γ
.

In order to prove the two upper bounds, we need to use
the fact that spheres with a bounded diameter do not con-
tain too many vertices. This can be easily derived from the
previous lemma.

Corollary 12. For every v ∈ V and every γ > 1,
∣

∣

∣

∣

{

x|d(v, x) ≤ 1− 1

γ

}
∣

∣

∣

∣

≤ γ`.

5.2.1 Upper Bound of O(ln k)
1−ε

(1 + ε)`

In order to achieve this upper bound, we use the following
simple RootLabel procedure, that assigns (independently)
to each vertex a label according to its distribution over the
label set. The random variable β is chosen independently in
each iteration.

Algorithm RootLabel

1. For i = 1 to n do:
2. Choose β ∼ Unif [0, 1].

3. Set f∗(ui)← min{j > 0 | ∑j

j′=1 ϕ(ui, j
′) ≥ β}.

4. Output f∗.

Clearly, Property (7) is maintained in RootLabel. Define
for every v ∈ V and every j ∈ L an indicator Yv,j for the
event that at the end of algorithm ApproxLabel, vertex
v is assigned to label j. According to Lemma 9, E[Yv,j ] ≤
(1 + ε)ϕ(v, j). By constraints (2) (capacity constraints), we
obtain that E

[
∑

v∈V Yv,j

]

≤ (1 + ε)`.
If {Yv,j}v∈V were independent random variables for ev-

ery j, a simple Chernoff bound would suffice to achieve a
good bound on the number of vertices assigned to each la-
bel. However, {Yv,j}v∈V are clearly dependent. Thus, we
use a more delicate bound by showing that {Yv,j}v∈V are
only “partly” dependent. This is done by showing that the
maximum degree in the dependency graph of {Yv,j}v∈V is
not too “large”.

Lemma 13. For every v ∈ V and every j ∈ L, Yv,j is

independent of
{

Yu,j | d(u, v) > 2 · ε
1+ε

}

.

Proof. Recall that {f∗(ui)}1≤i≤n are independent and
all R’s and α’s chosen by ApproxLabel are independent.
Therefore, the (random) intersections of the two random
subsets found by ApproxLabel in each iteration are also
independent. Thus, if u, v ∈ V cannot be assigned to a la-
bel in the same iteration, f(u) and f(v) are independent.

Since
{

u|d(u, v) > 2 ε
1+ε

}

is contained in the set of all ver-

tices that cannot be assigned to a label in the same iteration
as v (regardless of the order of the roots), the proof is com-
pleted.

We use the following definition of Janson [15] for a depen-
dency graph for the random variables {Yv,j}v∈V , for every
j ∈ L. In fact, this definition is equivalent to the one used
in the Lovász Local Lemma [1].

Definition 2. A graph Γ = (V ′, E′) is a dependency
graph for {Yv,j}v∈V , if V ′ = {Yv,j}v∈V and for every V ′′ ⊂
V ′ and Yv,j /∈ V ′′ such that Yv,j is not connected by any edge
in E′ to vertices in V ′′, Yv,j is independent of {Yv,j}v∈V ′′ .

Let us define a graph as follows:

Γj =

(

{Yv,j}v∈V ,

{

(Yu,j , Yv,j)|d(u, v) ≤ 2
ε

1 + ε

})

.

Clearly, by the above definition of a dependency graph and
by Lemma 13, Γj is a dependency graph for {Yv,j}v∈V . Re-
call that ε < 1, hence by Corollary 12, the maximum degree

of Γj is at most (1+ε)`
1−ε

− 1. Let us denote the maximum de-

gree of Γj by ∆j . Janson [15] proved the following inequality
for every t > 0:

Pr

{

∑

v∈V

Yv,j ≥ E

[

∑

v∈V

Yv,j

]

+ t

}

≤

exp

(

− 8t2

25(∆j + 1)
(
∑

v∈V Var(Yv,j) + bt
3

)

)

,

where b satisfies the following condition: Yv,j − E[Yv,j ] ≤ b,
for every v ∈ V .

It is important to notice that the above inequality is use-
ful for random variables having a small variance, which is
the case for us. Since for every v ∈ V , Yv,j is an indica-
tor and E

[
∑

v∈V Yv,j

]

≤ (1 + ε)`, we get that b = 1 and
∑

v∈V Var(Yv,j) ≤ (1 + ε)`. Hence, we get that if we choose
t = δ(1 + ε)`, the following holds:

Pr

[

∑

v∈V

Yv,j ≥ (1 + δ) (1 + ε)`

]

≤ exp

(

− 8(1− ε)δ2

25
(

1 + δ
3

)

)

.

We need the above probability to be at most 1
2k

. Therefore,

it suffices to choose δ = O(ln k)
1−ε

. Using the union bound over
all k labels, we can conclude that with probability at least
1
2
, there are at most (1+ δ)(1+ ε)` = O(ln k)

1−ε
(1+ ε)` vertices

assigned to each label.

5.2.2 Upper Bound of (` + 1) (1 + ε)`

In order to achieve this upper bound, we interpret the
probabilities {ϕ(u)}u∈V as an n × k matrix where the row
that corresponds to v is ϕ(v). We denote this matrix by
Φ, and additionally we denote by an upper index i, the i-th
column of a matrix. The next procedure generates a new
n×n matrix, denoted by A, which is doubly stochastic (the
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sum of each row and column is equal to 1). This is done by
going over the columns of Φ according to their index, and
“aggregating” and “splitting” them, such that the sum of
each new column is precisely 1. This process can be done,
since the sum of all the elements in Φ is n (the sum of each
row is 1 and there are n rows).

After constructing A, we sample a random permutation
matrix A∗ from a Birkhoff decomposition of A. A Birkhoff
decomposition of a doubly-stochastic matrix A is a convex
finite combination of permutation matrices that is equal to
A. Specifically,

A =
N
∑

i=1

λiAi,

where
∑N

i=1 λi = 1, and for every 1 ≤ i ≤ N , λi ≥ 0, and
Ai is a permutation matrix. It is well known that such a
decomposition always exists and it can be constructed in
polynomial time. One can view {λi}1≤i≤N as a distribution
over the permutation matrices that appear in the decompo-
sition. Hence, when we “sample” from a Birkhoff decom-
position, we choose a permutation matrix according to this
distribution.

We use the permutation matrix A∗ to sample a label for
each vertex in the following way. Since A∗ is a permutation
matrix, for every ui ∈ V there is a unique column j′ in A∗

such that A∗(ui, j
′) = 1. We choose a random label from all

labels that were “aggregated” into column j′ according to
their relative value in column j′ with respect to vertex ui.

We note that Property (7) holds. Additionally, it is easy
to see that there are at most ` + 1 vertices assigned to a
single label in f∗. This is true since each column Φi has
a total value of at most ` (this is due to constraints (2),
the capacity constraints). Thus, each column of Φ can be
“spread” on at most ` + 1 columns of A. Therefore, there
will always be at most ` + 1 vertices assigned to a single
label in f∗.

In a single iteration of ApproxLabel, all vertices that
are assigned to a label are at distance of at most ε

1+ε
from

that iteration’s root. According to Corollary 12, there are at
most (1 + ε)` such vertices. Therefore, we obtain an upper
bound of (` + 1) (1 + ε)` on the number of vertices that are
assigned to the same label.

The following theorem states the upper bound on the
number of vertices that ApproxLabel assigns to each label.
It follows directly by choosing the best upper bound from
the two presented.

Theorem 14. ApproxLabel finds a solution in which

there are at most min
{

O(ln k)
1−ε

, ` + 1
}

(1 + ε)` vertices as-

signed to each label, with probability of at least 1
2
.
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