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Abstract. Motivated by several applications, we introduce various distance measures between
“top k lists.” Some of these distance measures are metrics, while others are not. For each of these
latter distance measures, we show that they are “almost” a metric in the following two seemingly
unrelated aspects:

(i) they satisfy a relaxed version of the polygonal (hence, triangle) inequality, and
(ii) there is a metric with positive constant multiples that bound our measure above and below.
This is not a coincidence—we show that these two notions of almost being a metric are the

same. Based on the second notion, we define two distance measures to be equivalent if they are
bounded above and below by constant multiples of each other. We thereby identify a large and
robust equivalence class of distance measures.

Besides the applications to the task of identifying good notions of (dis)similarity between two
top k lists, our results imply polynomial-time constant-factor approximation algorithms for the rank
aggregation problem with respect to a large class of distance measures.
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1. Introduction. The notion of a “top k list” is ubiquitous in the field of in-
formation retrieval (IR). A top 10 list, for example, is typically associated with the
“first page” of results from a search engine. While there are several standard ways for
measuring the “top k quality” of an IR system (e.g., precision and recall at various
values of k), it appears that there is no well-studied and well-understood method for
comparing two top k lists for similarity/dissimilarity. Methods based on precision
and recall yield a way to compare two top k lists by comparing them both to “ground
truth.” However, there are two limitations of such approaches: First, these methods
typically give absolute (unary) ratings of top k lists, rather than give a relative, binary
measure of distance. Second, for IR in the context of the world-wide web, there is
often no clear notion of what ground truth is, so precision and recall are harder to
use.

These observations lead to the following question in discrete mathematics: How
do we define reasonable and meaningful distance measures between top k lists? We
motivate the study of this problem by sketching some applications.

Applications. The first group of applications we describe is in the comparison of
various search engines, or of different variations of the same search engine. What could
be a more natural way to compare two search engines than by comparing their visible
outputs (namely, their top k lists)? It is also important to compare variations (using
slightly different ranking functions) of the same search engine as an aid in the design of
ranking functions. In particular, we can use our methodology to test the effect on the
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top k lists of adding/deleting ranking heuristics to/from the search engine. Similar
issues include understanding the effect of augmenting the “crawl” data to add more
documents, of indexing more data types (e.g., PDF documents), etc. For a more
complex application in this group, consider a large-scale search engine. Typically,
its ranking function is a composite algorithm that builds on several simpler ranking
functions, and the following questions are of interest: What is the “contribution” of
each component to the final ranking algorithm (i.e., how similar is the top k composite
output to the top k of each of its components), and how similar is each component
to the others? A good quantitative way to measure these (which our methodology
supplies) could be a valuable tool in deciding which components to retain, enhance,
or delete so as to design a better ranking algorithm. Similarly, our methodology can
be used to compare a “metasearch” engine with each of its component search engines
in order to understand the degree to which the metasearch engine aligns itself with
each of its components. In section 9, we report our results on the comparisons of
seven popular Web search engines and on comparing a metasearch engine with its
components.

The second group of the applications can be classified as “engineering optimiza-
tions.” A fairly simple example is a system that draws its search results from several
servers; for the sake of speed, a popular heuristic is to send the query to the servers
and return the responses as soon as, say, 75% of the servers have responded. Naturally,
it is important to ensure that the quality of the results are not adversely affected by
this approximation. What one needs here are meaningful and quantitative measures
with which to estimate the difference in the top k lists caused by the approximation.
A more subtle example in the same category is the following (where our methodology
has already been successfully utilized). Carmel et al. [CCF+01] explored the effect
of pruning the index information of a search engine. Their experimental hypothesis,
which they verified using one of our distance measures, was that their pruning tech-
nique would have only small effects on the top k list for moderate values of k.1 Since
what a user sees is essentially a top k list, they concluded that they could prune the
index greatly, which resulted in better space and time performance, without much
effect on the search results. Kamvar et al. [KHMG03] have used one of our dis-
tance measures in evaluating the quality of an approximate version of the PageRank
ranking algorithm. Another scenario in a similar vein is in the area of approximate
near-neighbor searching, a very common technique for categorization problems. Here
an important goal is to understand the difference between approximate and exact
near-neighbor search; once again, since what matters the most are the top few re-
sults, our problem arises naturally.

Another application of comparing top k lists arises from the processing of data
logs to discover emerging trends (see [CCF02] for an example). For example, a search
engine could compute the top 100 queries each day and see how they differ from day to
day, from month to month, etc. Other examples include processing inventory logs and
sales logs in retail stores, logs of stocks traded each day, etc. In these cases, a spike
in the difference between day-to-day or hour-to-hour top k lists could trigger a closer
analysis and action (e.g., buy/sell shares, add inventory, etc.). For these settings, one
needs good notions of the difference between two given top k lists.

Finally, we consider the context of synthesizing a good composite ranking func-
tion from several simpler ones. In the rank aggregation problem [DKNS01], given

1In fact, our first author is a coauthor of [CCF+01] and the need for comparing top k lists that
arose in that paper is what led us to the research in this paper.
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several top k lists, the goal is to find a top k list that is a “good” consolidation of
the given lists. In [DKNS01] this problem is formulated by asking for an aggrega-
tion that has the minimum total distance with respect to the given lists, where the
distance is computed according to some distance measure of interest. The choice of
distance measure turns out to have a direct bearing on the complexity of computing
the best solution: some distance measures lead to NP-hard optimization problems,
while others admit polynomial-time solutions. A main algorithmic consequence of our
work is in enabling the design of efficient constant-factor approximation algorithms
for the aggregation problem with respect to a large class of distance measures. This is
achieved by identifying a class of distance measures that are within constant factors
of each other.

Results. We approach the problem of defining distance measures between top
k lists from many angles. We make several proposals for distance measures, based
on various motivating criteria—ranging from naive, intuitive ones to ones based on
rigorous mathematics. While the plethora of measures is good news (since it gives a
wide choice), it also poses the challenging question of how to understand their relative
merits, or how to make a sound choice among the many competing proposals.

One of our main contributions is a unified framework in which to catalog and or-
ganize various distance measures. Concretely, we propose the notion of an equivalence
class of distance measures and, in particular, we place many of the proposed distance
measures into one large equivalence class (which we dub the “big equivalence class”).
Our big equivalence class encompasses many measures that are intuitively appealing
(but whose mathematical properties are nebulous), as well as ones that were derived
via rigorous mathematics (but lacking in any natural, intuitive justification that a
user can appreciate). The main message of the equivalence class concept is that up to
constant factors (that do not depend on k), all distance measures in an equivalence
class are essentially the same.

Our equivalence classes have the property that if even one distance measure in a
class is a metric (in the usual mathematical sense), then each of the others in that
class is a “near metric.” To make the foregoing idea precise, we present two distinct
but seemingly unrelated definitions of a near metric. The first says that it satisfies a
relaxed version of the “polygonal inequality” (the natural extension of the standard
triangle inequality). The second says that there exists a metric with positive constant
multiples that bound our measure above and below. We prove the surprising result
that these two notions of near metric are, in fact, equivalent.

Our results have the following two consequences:
(1) The task of choosing a distance measure for IR applications is now considerably

simplified. The only conscious choice a user needs to make is about which equivalence
class to use, rather than which distance measure to use. Our personal favorite is
the big equivalence class that we have identified, mainly because of the rich variety of
underlying intuition and the mathematically clean and algorithmically simple methods
that it includes.

(2) We obtain constant-factor approximation algorithms for the rank aggregation
problem with respect to every distance measure in our big equivalence class. This is
achieved using the fact that the rank aggregation problem can be optimally solved in
polynomial time (via minimum cost perfect matching) for one of the distance measures
in this equivalence class.

As we noted, in section 9 we present an illustration of the applicability of our
methods in the context of search and metasearch. Based on the results for 750 user
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queries, we study the similarities between the top 50 lists of seven popular Web search
engines and also their similarity to the top 50 list of a metasearch engine built using
the seven search engines. The quantitative comparison of the search engines’ top 50
results brings some surprising qualitative facts to light. For example, our experiments
reveal that AOL Search and MSN Search yield very similar results, despite the fact
that these are competitors. Further analysis reveals that the crawl data for these
search engines (and also for the search engine HotBot) comes in part from Inktomi.
The fact that the top 50 results from HotBot are only moderately similar to that
of AOL Search and MSN Search suggests that while they all use crawl data from
Inktomi, HotBot probably uses a ranking function quite different from those of AOL
and MSN. We believe these studies make an excellent case for the applicability of
quantitative methods in comparing top k lists.

Methodology. A special case of a top k list is a “full list,” that is, a permu-
tation of all of the objects in a fixed universe. There are several standard methods
for comparing two permutations, such as Kendall’s tau and Spearman’s footrule (see
the textbooks [Dia88, KG90]). We cannot simply apply these known methods, since
they deal only with comparing one permutation against another over the same ele-
ments. Our first (and most important) class of distance measures between top k lists
is obtained by various natural modifications of these standard notions of distances
between permutations.

A fairly straightforward attempt at defining a distance measure is to compute the
intersection of the two top k lists (viewing them as sets). This approach has in fact
been used in several papers in IR [Lee95, Lee97, CCF+01]. In order to obtain a metric,
we consider the notion of the symmetric difference (union minus the intersection),
appropriately scaled. This, unfortunately, is not adequate for the top k distance
problem, since two top 10 lists that are reverses of each other would be declared to be
“very close.” We propose natural extensions of this idea that leads to a metric for top
k lists. Briefly, the idea is to truncate the top k lists at various points i ≤ k, compute
the symmetric difference metric between the resulting top i lists, and take a suitable
combination of them. This gives a second type of notion of the distance between top
k lists.

As we noted, our distance measure based on the intersection gives a metric. What
about our distance measures that are generalizations of metrics on permutations?
Some of these turn out to be metrics, but others do not. For each of these distance
measures d that is not a metric, we show that d is a “near metric” in two seemingly
different senses. Namely, d satisfies each of the following two properties.

Metric boundedness property. There is a metric d′ and positive constants c1 and
c2 such that for all x, y in the domain, c1d

′(x, y) ≤ d(x, y) ≤ c2d
′(x, y) for all x, y in

the domain.
Thus, metric boundedness says that d and some metric d′ are within constant

multiples of each other.
Relaxed polygonal inequality. There is a constant c such that for all n > 1 and

x, z, x1, . . . , xn−1 in the domain, d(x, z) ≤ c(d(x, x1) + d(x1, x2) + · · · + d(xn−1, z)).
As remarked earlier, we show the surprising fact that these two seemingly unre-

lated notions of being a “near metric” are the same. Note that the relaxed polygonal
inequality immediately implies the relaxed triangle inequality [FS98], which says that
there is a constant c such that d(x, z) ≤ c(d(x, y)+d(y, z)) for all x, y, z in the domain.
Relaxed triangle and polygonal inequalities suggest that the notion of “closeness” un-
der these measures are “reasonably transitive.” Interestingly enough, the equivalence
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of our two notions of “near metric” requires that we consider the relaxed polygo-
nal inequality rather than simply the relaxed triangle inequality; the relaxed triangle
inequality is not sufficient to imply the metric boundedness property.

Organization. In section 2, we review two metrics on permutations, which form
the basis for various distance measures that we define and study. In section 3, we
develop our new distance measures between top k lists. In section 4, we present
various notions of near metric, and show the equivalence between metric boundedness
and the relaxed polygonal inequality. In section 5, we define the notion of equivalence
of distance measures and show that all of our distance measures are in one large and
robust equivalence class, called the “big equivalence class.” Thus each of the distance
measures between top k lists introduced in section 3 is a metric or a near metric. In
section 6, we give an algorithmic application that exploits distance measures being
in the same equivalence class. In section 7, we discuss two approaches based on
Spearman’s rho and symmetric difference. In section 8, we discuss the interpolation
criterion—a natural and desirable property of a distance measure. In section 10, we
conclude the paper.

2. Metrics on permutations. The study of metrics on permutations is classi-
cal. The book by Kendall and Gibbons [KG90] provides a detailed account of various
methods. Diaconis [Dia88] gives a formal treatment of metrics on permutations. We
now review two well-known notions of metrics on permutations.

A permutation σ is a bijection from a set D = Dσ (which we call the domain,
or universe) onto the set [n] = {1, . . . , n}, where n is the size |D| of D. Let SD

denote the set of all permutations of D. For a permutation σ, we interpret σ(i) as
the position (or rank) of element i. We say that i is ahead of j in σ if σ(i) < σ(j).
Let P = PD = {{i, j} | i �= j and i, j ∈ D} be the set of unordered pairs of distinct
elements. Let σ1, σ2 be two members of SD.

Kendall’s tau metric between permutations is defined as follows. For each pair
{i, j} ∈ P of distinct members of D, if i and j are in the same order in σ1 and σ2,
then let K̄i,j(σ1, σ2) = 0; if i and j are in the opposite order (such as i being ahead of
j in σ1 and j being ahead of i in σ2), then let K̄i,j(σ1, σ2) = 1. Kendall’s tau is given
by K(σ1, σ2) =

∑
{i,j}∈P K̄i,j(σ1, σ2). The maximum value of K(σ1, σ2) is n(n−1)/2,

which occurs when σ1 is the reverse of σ2 (that is, when σ1(i) + σ2(i) = n + 1 for
each i). Kendall’s tau turns out to be equal to the number of exchanges needed in a
bubble sort to convert one permutation to the other.

Spearman’s footrule metric is the L1 distance between two permutations. For-
mally, it is defined by F (σ1, σ2) =

∑n
i=1 |σ1(i) − σ2(i)|. The maximum value of

F (σ1, σ2) is n2/2 when n is even, and (n + 1)(n − 1)/2 when n is odd. As with
Kendall’s tau, the maximum occurs when σ1 is the reverse of σ2. Later, we shall
discuss a variation of Spearman’s footrule called “Spearman’s rho.”

3. Measures for comparing top k lists. We now discuss modifications of
these metrics for the case when we have only the top k members of the ordering.
Formally, a top k list τ is a bijection from a domain Dτ (intuitively, the members of
the top k list) to [k]. We say that i appears in the top k list τ if i ∈ Dτ . Similar to
our convention for permutations, we interpret τ(i) (for i in Dτ ) as the rank of i in τ .
As before, we say that i is ahead of j in τ if τ(i) < τ(j). If τ is a top k list and σ is
a permutation on D ⊇ Dτ , then we say that σ is an extension of τ , which we denote
σ � τ , if σ(i) = τ(i) for all i ∈ Dτ .

Assume that τ1 and τ2 are top k lists. In this section, we give several measures
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for the distance between τ1 and τ2. We begin by recalling the definition of a metric
and formally defining a distance measure. A binary function d is called symmetric if
d(x, y) = d(y, x) for all x, y in the domain, and is called regular if d(x, y) = 0 if and
only if x = y. We define a distance measure to be a nonnegative, symmetric, regular
binary function. A metric is a distance measure d that satisfies the triangle inequality
d(x, z) ≤ d(x, y)+d(y, z) for all x, y, z in the domain. All of the measures of closeness
between top k lists considered in this paper are distance measures.

Global notation. Here we set up some global notation that we use throughout
the paper. When two top k lists τ1 and τ2 are understood, we write D = Dτ1∪Dτ2 ;Z =
Dτ1 ∩Dτ2 ;S = Dτ1 \Dτ2 ;T = Dτ2 \Dτ1 . Let z = |Z|. Note that |S| = |T | = k − z
and |D| = 2k − z.

Remark. An important feature of our work is that when we compare τ1 and τ2,
we do not assume that these are top k lists of elements from a fixed domain D. This
is a fairly natural requirement in many applications of our work. For example, if we
wish to compare the top 10 lists produced by two search engines, it is unreasonable to
expect any knowledge of the (possibly very large) universe to which elements of these
lists belong; in fact, we cannot even expect to know the size of this universe. The
drawback of our requirement is that it is one of the reasons why several very natural
distance measures that we define between top k lists fail to be metrics (cf. section
3.3).

3.1. Kendall’s tau. There are various natural ways to generalize Kendall’s tau
to measure distances between top k lists. We now consider some of them. We begin
by generalizing the definition of the set P. Given two top k lists τ1 and τ2, we define
P(τ1, τ2) = PDτ1∪Dτ2

to be the set of all unordered pairs of distinct elements in
Dτ1 ∪Dτ2 .

For top k lists τ1 and τ2, the minimizing Kendall distance Kmin(τ1, τ2) between
τ1 and τ2 is defined to be the minimum value of K(σ1, σ2), where σ1 and σ2 are each
permutations of Dτ1 ∪Dτ2 and where σ1 � τ1 and σ2 � τ2.

For top k lists τ1 and τ2, the averaging Kendall distance Kavg(τ1, τ2) between τ1
and τ2 is defined to be the expected value E(K(σ1, σ2)), where σ1 and σ2 are each
permutations of Dτ1 ∪ Dτ2 and where σ1 � τ1 and σ2 � τ2. Here E(·) gives the
expected value where all extensions are taken to be equally likely.

Next we consider an approach that we will show gives both the minimizing Kendall
distance and the averaging Kendall distance as special cases. Let p be a fixed param-
eter with 0 ≤ p ≤ 1. Similar to our definition of K̄i,j(σ1, σ2) for permutations σ1, σ2,

we define a penalty K̄
(p)
i,j (τ1, τ2) for top k lists τ1, τ2 for {i, j} ∈ P(τ1, τ2). There are

four cases.
Case 1 (i and j appear in both top k lists). If i and j are in the same order (such

as i being ahead of j in both top k lists), then let K̄
(p)
i,j (τ1, τ2) = 0; this corresponds

to “no penalty” for {i, j}. If i and j are in the opposite order (such as i being ahead

of j in τ1 and j being ahead of i in τ2), then let the penalty K̄
(p)
i,j (τ1, τ2) = 1.

Case 2 (i and j both appear in one top k list (say τ1), and exactly one of i or j,
say i, appears in the other top k list (τ2)). If i is ahead of j in τ1, then let the penalty

K̄
(p)
i,j (τ1, τ2) = 0, and otherwise let K̄

(p)
i,j (τ1, τ2) = 1. Intuitively, we know that i is

ahead of j as far as τ2 is concerned, since i appears in τ2 but j does not.
Case 3 (i, but not j, appears in one top k list (say τ1), and j, but not i, appears

in the other top k list (τ2)). Then let the penalty K̄
(p)
i,j (τ1, τ2) = 1. Intuitively, we
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know that i is ahead of j as far as τ1 is concerned and j is ahead of i as far as τ2 is
concerned.

Case 4 (i and j both appear in one top k list (say τ1), but neither i nor j appears
in the other top k list (τ2)). This is the interesting case (the only case where there is
really an option as to what the penalty should be). We call such pairs {i, j} special
pairs. In this case, we let the penalty K̄

(p)
i,j (τ1, τ2) = p.

Based on these cases, we now define K(p), the Kendall distance with penalty
parameter p, as follows:

K(p)(τ1, τ2) =
∑

{i,j}∈P(τ1,τ2)

K̄
(p)
i,j (τ1, τ2).

When p = 0, this gives an “optimistic approach.” It corresponds to the intuition
that we assign a nonzero penalty score to the pair {i, j} only if we have enough
information to know that i and j are in the opposite order according to the two top k
lists. When p = 1/2, this gives a “neutral approach.” It corresponds to the intuition
that we do not have enough information to know whether the penalty score should be
0 or 1, so we assign a neutral penalty score of 1/2. Later, we show that the optimistic
approach gives precisely Kmin and the neutral approach gives precisely Kavg.

The next lemma gives a formula, which we shall find useful later, for K(p).

Lemma 3.1. K(p)(τ1, τ2) = (k− z)((2 + p)k− pz + 1− p) +
∑

i,j∈Z K̄
(0)
i,j (τ1, τ2)−∑

j∈S τ1(j) −
∑

j∈T τ2(j).

Proof. We analyze the four cases in the definition of K(p)(τ1, τ2) and obtain
formulas for each of them in terms of our global notation. Case 1 is the situation
when for a pair {i, j}, we have i, j ∈ Z. In this case, the contribution of this pair to
K(p)(τ1, τ2) is ∑

i,j∈Z

K̄
(0)
i,j (τ1, τ2).(1)

Case 2 is the situation when for a pair {i, j}, one of i or j is in Z and the other is
in either S or T . Let us denote by i the element in Z and by j the element in S
or T . Let us now consider the case when i ∈ Z, j ∈ S. Let j1 < · · · < jk−z be the
elements in S. Fix an � ∈ {1, . . . , k − z} and consider the element j� and its rank
τ1(j�) in the first top k list τ1. There will be a contribution of 1 to K(p)(τ1, τ2) for
all i ∈ Z such that τ1(i) > τ1(j�), that is, all the elements i ∈ Z such that j� is
ahead of i in τ1; denote this net contribution of � to K(p)(τ1, τ2) by γ(�). We now
obtain an expression for γ(�). The total number of elements that j� is ahead of in τ1
is k − τ1(j�), and of these elements, �− 1 of them belong to S and the rest belong to
Z. This gives γ(�) = k−τ1(j�)− (�−1). Now, summing over all �, the contribution to

K(p)(τ1, τ2) is
∑k−z

�=1 γ(�) = (k − z)(k + z + 1)/2 −∑j∈S τ1(j). Similarly, for the case

when i ∈ Z, j ∈ T , the contribution to K(p)(τ1, τ2) is (k−z)(k+z+1)/2−∑j∈T τ2(j).

Summing these, the term corresponding to Case 2 contributing to K(p)(τ1, τ2) is

(k − z)(k + z + 1) −
∑
j∈S

τ1(j) −
∑
j∈T

τ2(j).(2)

Case 3 is the situation when for a pair {i, j}, we have i ∈ S and j ∈ T . The total
contribution to K(p)(τ1, τ2) from this case is

|S| × |T | = (k − z)2.(3)
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Finally, Case 4 is the situation when for a pair {i, j}, we have either i, j ∈ S or
i, j ∈ T . The total contribution to K(p)(τ1, τ2) from this case is

p

(|S|
2

)
+ p

(|T |
2

)
= 2p

(
k − z

2

)
.(4)

Adding equations (1)–(4), we obtain

K(p)(τ1, τ2) = (k−z)((2+p)k−pz+1−p)+
∑
i,j∈Z

K̄
(0)
i,j (τ1, τ2)−

∑
j∈S

τ1(j)−
∑
j∈T

τ2(j).

Let A and B be finite sets of objects (in our case of interest, these objects are
permutations). Let d be a metric of distances between objects (at the moment, we are
interested in the case where d is the Kendall distance between permutations). The
Hausdorff distance between A and B is given by

dHaus(A,B) = max

{
max
σ1∈A

min
σ2∈B

d(σ1, σ2), max
σ2∈B

min
σ1∈A

d(σ1, σ2)

}
.

Although this looks fairly nonintuitive, it is actually quite natural, as we now explain.
The quantity minσ2∈B d(σ1, σ2) is the distance between σ1 and the set B. Therefore,
the quantity maxσ1∈A minσ2∈B d(σ1, σ2) is the maximal distance of a member of A
from the set B. Similarly, the quantity maxσ2∈B minσ1∈A d(σ1, σ2) is the maximal
distance of a member of B from the set A. Therefore, the Hausdorff distance between
A and B is the maximal distance of a member of A or B from the other set. Thus, A
and B are within Hausdorff distance s of each other precisely if every member of A
and B is within distance s of some member of the other set. The Hausdorff distance
is well known to be a metric.

Critchlow [Cri80] used the Hausdorff distance to define a distance measure be-
tween top k lists. Specifically, given a metric d that gives the distance between
permutations, Critchlow defined the distance between top k lists τ1 and τ2 to be

max

{
max
σ1
τ1

min
σ2
τ2

d(σ1, σ2), max
σ2
τ2

min
σ1
τ1

d(σ1, σ2)

}
.(5)

Critchlow assumed that there is a fixed domain D, and so σ1 and σ2 range over all
permutations with domain D. This distance measure is a metric, since it is a special
case of a Hausdorff metric.

We, too, are interested in considering a version of the Hausdorff distance. How-
ever, as remarked earlier, in this paper we do not assume a fixed domain. Therefore,
we define KHaus, the Hausdorff version of the Kendall distance between top k lists, to
be given by (5) with d(σ1, σ2) as the Kendall distance K(σ1, σ2), but where, unlike
Critchlow, we take σ1 and σ2 to be permutations of Dτ1 ∪Dτ2 .

Critchlow obtains a closed form for his version of (5) when d(σ1, σ2) is the Kendall
distance K(σ1, σ2). Specifically, if n is the size of the underlying domain D, and
d(σ1, σ2) = K(σ1, σ2), he shows that (5) is given by

(k − z)

(
n + k − k − z − 1

2

)
+
∑
i,j∈Z

K̄
(0)
i,j (τ1, τ2) −

∑
i∈S

τ1(i) −
∑
i∈T

τ2(i).(6)

By replacing n by 2k − z, we obtain a closed form for KHaus.
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Lemma 3.2.

KHaus(τ1, τ2) =
1

2
(k − z)(5k − z + 1) +

∑
i,j∈Z

K̄
(0)
i,j (τ1, τ2) −

∑
i∈S

τ1(i) −
∑
i∈T

τ2(i).

We show that the “optimistic approach” given by K(0) and the “neutral approach”
given by K(1/2) are exactly Kmin and Kavg, respectively. Furthermore, we show the
somewhat surprising result that the Hausdorff distance KHaus also equals K(1/2).

Proposition 3.3. Kmin = K(0).
Proof. Let τ1 and τ2 be top k lists. We must show that Kmin(τ1, τ2) = K(0)(τ1, τ2).

Define σ1 to be the extension of τ1 over D where the elements are, in order, the
elements of Dτ1 in the same order as they are in τ1, followed by the elements of T in
the same order as they are in τ2. For example, if k = 4, if the top 4 elements of τ1 are,
in order, 1, 2, 3, 4, and if the top 4 elements of τ2 are, in order, 5, 4, 2, 6, then the
ordering of the elements for σ1 is 1, 2, 3, 4, 5, 6. We similarly define the extension σ2
of τ2 by reversing the roles of τ1 and τ2. First, we show that Kmin(τ1, τ2) = K(σ1, σ2),
and then we show that K(σ1, σ2) = K(0)(τ1, τ2).

To show that Kmin(τ1, τ2) = K(σ1, σ2), it is clearly sufficient to show that if σ′
1

is an arbitrary extension of τ1 (over D) and σ′
2 is an arbitrary extension of τ2 (over

D), and if {i, j} is an arbitrary member of P(τ1, τ2), then

K̄i,j(σ1, σ2) ≤ K̄i,j(σ
′
1, σ

′
2).(7)

When {i, j} is not a special pair (that is, when {i, j} falls into the first three cases of

the definition of K̄
(p)
i,j (τ1, τ2)), we have equality in (7), since the ordering of i and j

according to σ1, σ2, σ
′
1, σ

′
2 are forced by τ1, τ2. When {i, j} is a special pair, we have

K̄i,j(σ1, σ2) = 0, and so again (7) holds.
We have shown that Kmin(τ1, τ2) = K(σ1, σ2). Hence, we need only show that

K(0)(τ1, τ2) = K(σ1, σ2). To show this, we need only show that K̄
(0)
i,j (τ1, τ2) =

K̄i,j(σ1, σ2) for every pair {i, j}. As before, this is automatic when {i, j} is not a

special pair. When {i, j} is a special pair, we have K̄
(0)
i,j (τ1, τ2) = 0 = K̄i,j(σ1, σ2).

This concludes the proof.
Proposition 3.4. Kavg = K(1/2) = KHaus.
Proof. Let τ1, τ2 be top k lists. Then

Kavg(τ1, τ2) = E(K(σ1, σ2))

= E

 ∑
{i,j}∈P(τ1,τ2)

K̄i,j(σ1, σ2)


=

∑
{i,j}∈P(τ1,τ2)

E
(
K̄i,j(σ1, σ2)

)
.(8)

We shall show that

E
(
K̄i,j(σ1, σ2)

)
= K̄

(1/2)
i,j (τ1, τ2).(9)

This proves that Kavg = K(1/2), since the result of substituting K̄
(1/2)
i,j (τ1, τ2) for

E(K̄i,j(σ1, σ2)) in (8) gives K(1/2)(τ1, τ2). Similar to before, when {i, j} is not a special
pair, we have K̄i,j(σ1, σ2) = K̄(1/2)(τ1, τ2), and so (9) holds. When {i, j} is a special
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pair, then K̄
(1/2)
i,j (τ1, τ2) = 1/2. So we are done with showing that Kavg = K(1/2) if we

show that when {i, j} is a special pair, then E(K̄i,j(σ1, σ2)) = 1/2. Assume without
loss of generality that i, j are both in Dτ1 but neither is in Dτ2 . The ordering of i, j
in σ1 is forced by τ1. Further, there is a one-to-one correspondence between those
permutations σ2 that extend τ2 with i ahead of j and those that extend τ2 with j
ahead of i (the correspondence is determined by simply switching i and j). Therefore,
for each choice of σ1, exactly half of the choices for σ2 have K̄i,j(σ1, σ2) = 0, and for
the other half, K̄i,j(σ1, σ2) = 1. So E(K̄i,j(σ1, σ2)) = 1/2, as desired.

We now show that KHaus = K(1/2). If we set p = 1/2 in our formula for K(p)

given in Lemma 3.1, we obtain the right-hand side of the equation in Lemma 3.2.
Thus, KHaus = K(1/2). We now give a direct proof that does not require the use of
Lemma 3.2 and hence does not require the use of Critchlow’s formula given by (6).

Let τ1, τ2 be top k lists. Then KHaus(τ1, τ2) is given by

max

{
max
σ1
τ1

min
σ2
τ2

K(σ1, σ2), max
σ2
τ2

min
σ1
τ1

K(σ1, σ2)

}
.

Let σ∗
1 be the permutation over Dτ1 ∪Dτ2 where σ∗

1 � τ1 and where σ∗
1(k + 1), . . . ,

σ∗
1(2k − z) are, respectively, the members of T in reverse order. Let σ∗

2 be the per-
mutation over Dτ1 ∪Dτ2 where σ∗

2 � τ2 and where σ∗
2(k + 1), . . . , σ∗

2(2k − z) are, re-
spectively, the members of S in order (not in reverse order). It is not hard to see that
KHaus(τ1, τ2) = K(σ∗

1 , σ
∗
2). So we need only show that K(σ∗

1 , σ
∗
2) = K(1/2)(τ1, τ2).

In the definition of K(p), let us consider the contribution of each pair {i, j} to
K(1/2)(τ1, τ2), as compared to its contribution to K(σ∗

1 , σ
∗
2). In the first three cases

in the definition of K(p), it is easy to see that {i, j} contributes exactly the same to
K(1/2)(τ1, τ2) as to K(σ∗

1 , σ
∗
2). Let us now consider Case 4, where {i, j} is a special

pair, that is, where both i and j appear in one of the top k lists τ1 or τ2, but neither
appears in the other top k list. If both i and j appear in τ1 but neither appears in
τ2, then the contribution to K(1/2)(τ1, τ2) is 1/2, and the contribution to K(σ∗

1 , σ
∗
2)

is 0. If both i and j appear in τ2 but neither appears in τ1, then the contribution to
K(1/2)(τ1, τ2) is 1/2 and the contribution to K(σ∗

1 , σ
∗
2) is 1. Since there are just as

many pairs {i, j} of the first type (where both i and j appear in τ1 but neither appears
in τ2) as there are of the second type (where both i and j appear in τ2 but neither
appears in τ1), the total contribution of all pairs {i, j} of Case 4 to K(1/2)(τ1, τ2) and
K(σ∗

1 , σ
∗
2) is the same. This proves that KHaus = K(1/2).

3.2. Spearman’s footrule. We now generalize Spearman’s footrule to several
methods for determining distances between top k lists, just as we did for Kendall’s
tau.

For top k lists τ1 and τ2, the minimizing footrule distance Fmin(τ1, τ2) between
τ1 and τ2 is defined to be the minimum value of F (σ1, σ2), where σ1 and σ2 are each
permutations of D and where σ1 � τ1 and σ2 � τ2.

For top k lists τ1 and τ2, the averaging footrule distance Favg(τ1, τ2) between τ1
and τ2 is defined to be the expected value E(F (σ1, σ2)), where σ1 and σ2 are each
permutations of Dτ1 ∪ Dτ2 and where σ1 � τ1 and σ2 � τ2. Again, E(·) gives the
expected value where all extensions are taken to be equally likely.

Let � be a real number greater than k. The footrule distance with location param-
eter �, denoted F (�), is obtained—intuitively—by placing all missing elements in each
of the lists at position � and computing the usual footrule distance between them.
More formally, given top k lists τ1 and τ2, define functions τ ′1 and τ ′2 with domain
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Dτ1 ∪Dτ2 by letting τ ′1(i) = τ1(i) for i ∈ Dτ1 and τ ′1(i) = � otherwise, and similarly
defining τ ′2. We then define F (�) by setting F (�)(τ1, τ2) =

∑
i∈Dτ1

∪Dτ2
|τ ′1(i) − τ ′2(i)|.

A natural choice for � is k + 1, and we make this choice in our experiments
(section 9). We denote F (k+1) simply by F ∗.

The next lemma gives a formula, which we shall find useful later, for F (�).
Lemma 3.5. F (�)(τ1, τ2) = 2(k − z)� +

∑
i∈Z |τ1(i) − τ2(i)| −

∑
i∈S τ1(i) −∑

i∈T τ2(i).
Proof.

F (�)(τ1, τ2) =
∑
i∈Z

|τ1(i) − τ2(i)| +
∑
i∈S

|τ1(i) − τ2(i)| +
∑
i∈T

|τ1(i) − τ2(i)|

=
∑
i∈Z

|τ1(i) − τ2(i)| +
∑
i∈S

(�− τ1(i)) +
∑
i∈T

(�− τ2(i))

= 2(k − z)� +
∑
i∈Z

|τ1(i) − τ2(i)| −
∑
i∈S

τ1(i) −
∑
i∈T

τ2(i).

Similar to our definition of KHaus, we define FHaus, the Hausdorff version of
the footrule distance between top k lists, to be given by (5) with d(σ1, σ2) as the
footrule distance F (σ1, σ2), where, as before, we take σ1 and σ2 to be permutations
of Dτ1 ∪Dτ2 .

Just as he did with the Kendall distance, Critchlow considered his version of (5)
when d(σ1, σ2) is the footrule distance F (σ1, σ2) and where there is a fixed domain of
size n. He obtained a closed formula given by

(k − z)(2n + 1 − (k − z)) +
∑
i∈Z

|τ1(i) − τ2(i)| −
∑
i∈S

τ1(i) −
∑
i∈T

τ2(i).

By replacing n by 2k − z, we obtain a closed form for FHaus.
Lemma 3.6.

FHaus(τ1, τ2) = (k − z)(3k − z + 1) +
∑
i∈Z

|τ1(i) − τ2(i)| −
∑
i∈S

τ1(i) −
∑
i∈T

τ2(i)

= F ( 3k−z+1
2 )(τ1, τ2).

The last equality is obtained by formally substituting � = (3k− z + 1)/2 into the
formula for F (�) given by Lemma 3.5. Thus, intuitively, FHaus(τ1, τ2) is a “dynamic”
version of F (�), where � = (3k − z + 1)/2 actually depends on τ1 and τ2. Since
Fmin = Favg = FHaus (Proposition 3.7), this gives us a formula for Fmin and Favg
as well. Note that � = (3k − z + 1)/2 is the average of k + 1 and 2k − z, where
the latter number is the size of D = Dτ1 ∪ Dτ2 . Since taking � = (3k − z + 1)/2
corresponds intuitively to “placing the missing elements at an average location,” it is
not surprising that the resulting formula gives Favg.

Unlike the situation with Kmin and Kavg, the next proposition tells us that Fmin

and Favg are the same. Furthermore, the Hausdorff distance FHaus shares this common
value.

Proposition 3.7. Fmin = Favg = FHaus.
Proof. Let τ1 and τ2 be top k lists. Let σ1, σ

′
1, σ2, σ

′
2 be permutations of D =

Dτ1 ∪Dτ2 , where σ1 and σ′
1 extend τ1 and where σ2 and σ′

2 extend τ2. We need only
show that F (σ1, σ2) = F (σ′

1, σ
′
2), that is, that the value of F (σ1, σ2) is independent

of the choice of σ1, σ2. Therefore, we need only show that F (σ1, σ2) = F (σ1, σ
′
2),
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where σ1 is held fixed, since by symmetry (where σ′
2 is held fixed) we would then have

F (σ1, σ
′
2) = F (σ′

1, σ
′
2), and hence F (σ1, σ2) = F (σ1, σ

′
2) = F (σ′

1, σ
′
2), as desired.

Now F (σ1, σ2) =
∑

i∈D |σ1(i) − σ2(i)|. So we need only show that∑
i∈D

|σ1(i) − σ2(i)| =
∑
i∈D

|σ1(i) − σ′
2(i)|.(10)

Now ∑
i∈D

|σ1(i) − σ2(i)| =
∑

i∈Dτ2

|σ1(i) − σ2(i)| +
∑
i∈S

|σ1(i) − σ2(i)|,(11)

and similarly∑
i∈D

|σ1(i) − σ′
2(i)| =

∑
i∈Dτ2

|σ1(i) − σ′
2(i)| +

∑
i∈S

|σ1(i) − σ′
2(i)|.(12)

Now σ2(i) = σ′
2(i) for i ∈ Dτ2 . Hence,∑

i∈Dτ2

|σ1(i) − σ2(i)| =
∑

i∈Dτ2

|σ1(i) − σ′
2(i)|.(13)

From (11), (12), and (13), it follows that to prove (10), and hence complete the proof,
it is sufficient to prove∑

i∈S

|σ1(i) − σ2(i)| =
∑
i∈S

|σ1(i) − σ′
2(i)|.(14)

If i ∈ S, then σ1(i) ≤ k < σ2(i). Thus, if i ∈ S, then σ1(i) < σ2(i), and similarly
σ1(i) < σ′

2(i). So it is sufficient to prove∑
i∈S

(σ1(i) − σ2(i)) =
∑
i∈S

(σ1(i) − σ′
2(i))

and hence to prove ∑
i∈S

σ2(i) =
∑
i∈S

σ′
2(i).(15)

But both the left-hand side and the right-hand side of (15) equal
∑|D|

�=k+1 �, and hence
are equal. This completes the proof that Fmin = Favg = FHaus.

3.3. Metric properties. We have now introduced three distinct measures of
closeness between top k lists: (1) K(p), which has Kmin and Kavg = KHaus as special
cases for certain choices of p; (2) Fmin, which equals Favg and FHaus; and (3) F (�).
Perhaps the most natural question, and the main subject of our investigation, is to
ask whether or not they are metrics.

As a preview to our main results, we begin by observing that while F (�) is a
metric, none of the other distance measures that we have defined (namely, K(p) and
Fmin, hence also Kmin,Kavg,KHaus, Favg, FHaus) is a metric.
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Proposition 3.8. The distance measure F (�) is a metric for every choice of the
location parameter �.

Proof. We need only show that the triangle inequality holds. Let τ1, τ2, τ3 be top k
lists. Let n = |Dτ1∪Dτ2∪Dτ3 |. Define an n-dimensional vector v1 corresponding to τ1
by letting v1(i) = τ1(i) for i ∈ Dτ1 and � otherwise. Similarly, define an n-dimensional
vector v2 corresponding to τ2 and an n-dimensional vector v3 corresponding to τ3. It
is easy to see that F (�)(τ1, τ2) is the L1 distance between v1 and v2 and similarly for
F (�)(τ1, τ3) and F (�)(τ2, τ3). The triangle inequality for F (�) then follows immediately
from the triangle inequality for the L1 norm between two vectors in n-dimensional
Euclidean space.

The other two distinct distance measures, namely K(p) and Fmin, are not metrics,
as we now show. Let τ1 be the top 2 list where the top 2 items in order are 1,2; let τ2
be the top 2 list where the top 2 items in order are 1,3; let τ3 be the top 2 list where
the top 2 items in order are 3, 4. It is straightforward to verify that K(p)(τ1, τ2) = 1,
K(p)(τ1, τ3) = 4 + 2p, and K(p)(τ2, τ3) = 2. So the triangle inequality fails, because
K(p)(τ1, τ3) > K(p)(τ1, τ2) + K(p)(τ2, τ3) for every p ≥ 0. Therefore, K(p) is not a
metric, no matter what the choice of the penalty parameter p is; in particular, by
Propositions 3.3 and 3.4, neither Kmin nor Kavg is a metric.

The same counterexample shows that Fmin is not a metric. In this case, it is easy
to verify that Fmin(τ1, τ2) = 2, Fmin(τ1, τ3) = 8, and Fmin(τ2, τ3) = 4. So the triangle
inequality fails, because Fmin(τ1, τ3) > Fmin(τ1, τ2) + Fmin(τ2, τ3).

The fact that Fmin (and hence Favg and FHaus) are not metrics shows that they
are not special cases of F (�), since F (�) is a metric. This is in contrast to the situation
with Kendall distances, where Kmin, Kavg, and KHaus are special cases of K(p). (As
we noted earlier, the versions of FHaus and KHaus defined by Critchlow [Cri80] are
indeed metrics, since the domain is fixed in his case.)

4. Metrics, near metrics, and equivalence classes. Motivated by the fact
that most of our distance measures are not metrics (except for the somewhat strange
measure F (�)), we next consider a precise sense in which each is a “near metric.”
Actually, we shall consider two seemingly different notions of being a near metric,
which our distance measures satisfy, and obtain the surprising result that these notions
are actually equivalent.

Our first notion of near metric is based on “relaxing” the triangle inequality (or
more generally, the polygonal inequality) that a metric is supposed to satisfy.

Definition 4.1 (relaxed inequalities). A binary function d satisfies the c-triangle
inequality if d(x, z) ≤ c(d(x, y) + d(y, z)) for all x, y, z in the domain. A binary
function d satisfies the c-polygonal inequality if d(x, z) ≤ c(d(x, x1) + d(x1, x2) +
· · · + d(xn−1, z)) for all n > 1 and x, z, x1, . . . , xn−1 in the domain.

The notion of c-triangle inequality, to our knowledge, appears to be rarely studied.
It has been used in a paper on pattern matching [FS98] and in the context of the
traveling salesperson problem [AB95, BC00]. We do not know if the c-polygonal
inequality has ever been studied.

Definition 4.2 (relaxed metrics). A c-relaxedt metric is a distance measure
that satisfies the c-triangle inequality. A c-relaxedp metric is a distance measure that
satisfies the c-polygonal inequality.

Of course, every c-relaxedp metric is a c-relaxedt metric. Theorem 4.7 below says
that there is a c-relaxedt metric that is not a c′-relaxedp metric for any constant c′.
We shall focus here on the stronger notion of being a c-relaxedp metric.

The other notion of near metric that we now discuss is based on bounding the
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distance measure above and below by positive constant multiples of a metric.
Definition 4.3 (metric boundedness). A (c1, c2)-metric-bounded distance mea-

sure is a distance measure d for which there is a metric d′ and positive constants c1
and c2 such that c1d

′(x, y) ≤ d(x, y) ≤ c2d
′(x, y).

Note that without loss of generality, we can take c1 = 1 (by replacing the metric
d′ by the metric c1d

′). In this case, we say that d is c2-metric bounded.
The next theorem gives the unexpected result that our two notions of near metric

are equivalent (and even with the same value of c).
Theorem 4.4 (main result 1). Let d be a distance measure. Then d is a c-

relaxedp metric if and only if d is c-metric-bounded.
Proof. ⇐= Assume that d is a c-relaxedp metric. Define d′ by taking

d′(x, z) = min
�

min
y0,...,y� | y0=x and y�=z

�−1∑
i=0

d(yi, yi+1).(16)

We now show that d′ is a metric.
First, we have d′(x, x) = 0, since d(x, x) = 0. From (16) and the polygonal

inequality with constant c, we have d′(x, z) ≥ (1/c)d(x, z). Hence, d′(x, z) �= 0 if
x �= z. Symmetry of d′ follows immediately from symmetry of d. Finally, d′ satisfies
the triangle inequality, since

d′(x, z) = min
�

min
y0,...,y� | y0=x and y�=z

�−1∑
i=0

d(xi, xi+1)

≤ min
�1

min
y0,...,y�1

| y0=x and y�1
=y

�1−1∑
i=0

d(yi, yi+1)

+ min
�2

min
z0,...,z�1 | z0=y and z�2=z

�2−1∑
i=0

d(zi, zi+1)

= d′(x, y) + d′(y, z).

Therefore, d′ is a metric.
We now show that d is c-metric-bounded. By (16), it follows easily that d′(x, z) ≤

d(x, z). By (16) and the polygonal inequality with constant c, we have d(x, z) ≤
cd′(x, z).

=⇒ Assume that d is c-metric-bounded. Then 0 = d′(x, x) ≤ d(x, x) ≤ cd′(x, x) =
0. Therefore, d(x, x) = 0. If x �= y, then d(x, y) ≥ d′(x, y) > 0. We now show that d
satisfies the c-polygonal inequality.

d(x, z) ≤ cd′(x, z)

≤ c(d′(x, x1) + d′(x1, x2) + · · · + d′(xn−1, z)) since d′ is a metric

≤ c(d(x, x1) + d(x1, x2) + · · · + d(xn−1, z)) since d′(x, y) ≤ d(x, y).

Since also d is symmetric by assumption, it follows that d is a c-relaxedp
metric.

Inspired by Theorem 4.4, we now define what it means for a distance measure
to be “almost” a metric, and a robust notion of “similar” or “equivalent” distance
measures.
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Definition 4.5 (near metric). A distance measure between top k lists is a near
metric if there is a constant c, independent of k, such that the distance measure is a
c-relaxedp metric (or, equivalently, is c-metric-bounded).

2

Definition 4.6 (equivalent distance measures). Two distance measures d and
d′ between top k lists are equivalent if there are positive constants c1 and c2 such that
c1d

′(τ1, τ2) ≤ d(τ1, τ2) ≤ c2d
′(τ1, τ2) for every pair τ1, τ2 of top k lists.3

It is easy to see that this definition of equivalence actually gives us an equivalence
relation (reflexive, symmetric, and transitive). It follows from Theorem 4.4 that a
distance measure is equivalent to a metric if and only if it is a near metric.

Our notion of equivalence is inspired by a classical result of Diaconis and Graham
[DG77], which states that for every two permutations σ1, σ2, we have

K(σ1, σ2) ≤ F (σ1, σ2) ≤ 2K(σ1, σ2).(17)

(Of course, we are dealing with distances between top k lists, whereas Diaconis and
Graham dealt with distances between permutations.)

Having showed that the notions of c-relaxedp metric and c-metric-boundedness
are identical, we compare these to the notions of c-relaxedt metric and the classical
topological notion of being a topological metric, that is, of generating a metrizable
topology.

Theorem 4.7. Every c-relaxedp metric is a c-relaxedt metric, but not conversely.
In fact, there is a c-relaxedt metric that is not a c′-relaxedp metric for any constant
c′.

Proof. It is clear that every c-relaxedp metric is a c-relaxedt metric. We now
show that the converse fails. Define d on the space [0, 1] by taking d(x, y) = (x− y)2.
It is clear that d is a symmetric function with d(x, y) = 0 if and only if x = y. To
show the 2-triangle inequality, let α = d(x, z), β = d(x, y), and γ = d(y, z). Now√
α ≤ √

β +
√
γ, since the function d′ with d′(x, y) = |x− y| is a metric. By squaring

both sides, we get α ≤ β + γ + 2
√
βγ. But

√
βγ ≤ (β + γ)/2 by the well-known fact

that the geometric mean is bounded above by the arithmetic mean. We therefore
obtain α ≤ 2(β+γ), that is, d(x, z) ≤ 2(d(x, y) +d(y, z)). So d is a 2-relaxedt metric.

Let n be an arbitrary positive integer, and define xi to be i/n for 1 ≤ i ≤ n− 1.
Then d(0, x1)+d(x1, x2)+ · · ·+d(xn−1, 1) = n(1/n2) = 1/n. Since this converges to 0
as n goes to infinity, and since d(0, 1) = 1, there is no constant c′ for which d satisfies
the polygonal inequality. Therefore, d is a c-relaxedt metric that is not a c′-relaxedp
metric for any constant c′.

Theorem 4.8. Every c-relaxedt metric is a topological metric, but not conversely.
The converse fails even if we restrict attention to distance measures.

Proof. By the topological space induced by a binary function d, we mean the
topological space whose open sets are precisely the union of sets (“ε-balls”) of the form
{y | d(x, y) < ε}. A topological space is metrizable if there is a metric d that induces
the topology. A topological metric is a binary function d such that the topology
induced by d is metrizable.

There is a theorem of Nagata and Smirnov [Dug66, pp. 193–195] that a topological
space is metrizable if and only if it is regular and has a basis that can be decomposed

2It makes sense to say that the constant c is independent of k, since each of our distance measures
is actually a family, parameterized by k. We need to make an assumption that c is independent of
k, since otherwise we are simply considering distance measures over finite domains, where there is
always such a constant c.

3As before, the constants c1 and c2 are assumed to be independent of k.



COMPARING TOP k LISTS 149

into an at most countable collection of neighborhood-finite families. The proof of
the “only if” direction can be modified in an obvious manner to show that every
topological space induced by a relaxedt metric is regular and has a basis that can be
decomposed into an at most countable collection of neighborhood-finite families. It
follows that a topological space is metrizable if and only if it is induced by a c-relaxedt
metric. That is, every c-relaxedt metric is a topological metric.

We now show that the converse fails even if we restrict attention to distance
measures (binary nonnegative functions d that are symmetric and satisfy d(x, y) = 0
if and only if x = y). Define d on the space [1,∞) by taking d(x, y) = |y−x|max{x,y}.
It is not hard to verify that d induces the same topology as the usual metric d′ with
d′(x, y) = |x− y|. The intuition is that (1) the ε-ball {y | d(x, y) < ε} is just a minor
distortion of an ε-ball {y | dm(x, y) < ε}, where dm(x, y) = |x − y|m for some m that
depends on x (in fact, with m = x), and (2) the function dm locally induces the same
topology as the usual metric d′ with d′(x, y) = |x− y|. Condition (2) holds since the
ball {y | |x− y|m < ε} is the same as the ball

{
y | |x− y| < ε1/m

}
. So d is a topological

metric. We now show that d is not a c-relaxedt metric.
Let x = 1, y = n + 1, and z = 2n + 1. We shall show that for each constant c,

there is n such that

d(x, z) > c(d(x, y) + d(y, z)).(18)

This implies that d is not a relaxedt metric. When we substitute for x, y, z in (18),
we obtain

(2n + 1)2n+1 > c((n + 1)n+1 + (n + 1)2n+1).(19)

But it is easy to see that (19) holds for every sufficiently large n.
Thus, we have metric⇒ c-relaxedp metric⇒ c-relaxedt metric⇒ topo-

logical metric, and none of the reverse implications hold.

5. Relationships between measures. We now come to the second main result
of the paper, where we show that all of our distance measures we have discussed are
in the same equivalence class, that is, are bounded by constant multiples of each
other both above and below. The connections are proved via two proof methods. We
use direct counting arguments to relate F ∗ with Fmin, to relate the K(p) measures
with each other, and to relate the F (�) measures with each other. The more subtle
connection between Kmin and Fmin—which provides the link between the measures
based on Kendall’s tau and the measures based on Spearman’s footrule—is proved by
applying Diaconis and Graham’s inequalities (17) for permutations σ1, σ2.

Theorem 5.1 (main result 2). The distance measures Kmin, Kavg, KHaus, K
(p)

(for every choice of p), Fmin, Favg, FHaus, and F
(�) (for every choice of �) are all in

the same equivalence class.
The fact that F (�) is a metric now implies that all our distance measures are near

metrics.
Corollary 5.2. Each of K(p) and Fmin (thus also Kmin,Kavg,KHaus, Favg, FHaus)

is a near metric.
We discuss the proof of this theorem shortly. We refer to the equivalence class

that contains all of these distance measures as the big equivalence class. The big
equivalence class seems to be quite robust. As we have seen, some members of the
big equivalence class are metrics.

In later sections, we shall find it convenient to deal with normalized versions of
our distance measures by dividing each distance measure by its maximum value. The
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normalized version is then a distance measure that lies in the interval [0, 1].4 The
normalized version is a metric if the original version is a metric, and is a near metric
if the original version is a near metric. It is easy to see that if two distance measures
are in the same equivalence class, then so are their normalized versions.

Theorem 5.1 is proven by making use of the following theorem (Theorem 5.3),
along with Propositions 3.3, 3.4, and 3.7. The bounds in Theorem 5.3 are not tight;
while we have improved some of them with more complicated proofs, our goal here
is simply to prove enough to obtain Theorem 5.1. If we really wished to obtain
tight results, we would have to compare every pair of the distance measures we have
introduced, such as K(p) versus F (�) for arbitrary p, �.

Theorem 5.3. Let τ1, τ2 be top k lists.
(1) Kmin(τ1, τ2) ≤ Fmin(τ1, τ2) ≤ 2Kmin(τ1, τ2);
(2) F ∗(τ1, τ2) ≤ Fmin(τ1, τ2) ≤ 2F ∗(τ1, τ2);

(3) K(p)(τ1, τ2) ≤ K(p′)(τ1, τ2) ≤ ( 1+p′

1+p )K(p)(τ1, τ2) for 0 ≤ p ≤ p′ ≤ 1;

(4) F (�)(τ1, τ2) ≤ F (�′)(τ1, τ2) ≤ ( �′−k
�−k )F (�)(τ1, τ2) for k < � ≤ �′.

Proof. (1) For the first inequality of part (1), let σ1, σ2 be permutations so that
σ1 � τ1, σ2 � τ2, and Fmin(τ1, τ2) = F (σ1, σ2). Then Fmin(τ1, τ2) = F (σ1, σ2) ≥
K(σ1, σ2) ≥ Kmin(τ1, τ2), using the first inequality in (17) and the fact that Kmin is
the minimum over all extensions σ1 of τ1 and σ2 of τ2.

For the second inequality of part (1), let σ1, σ2 be permutations so that σ1 �
τ1, σ2 � τ2, and Kmin(τ1, τ2) = K(σ1, σ2). Then Kmin(τ1, τ2) = K(σ1, σ2) ≥
(1/2)F (σ1, σ2) ≥ (1/2)Fmin(τ1, τ2) using the second inequality in (17) and the fact
that Fmin is minimum over all extensions σ1 of τ1 and σ2 of τ2.

(2) Let σ1, σ2 be permutations so that σ1 � τ1, σ2 � τ2, and Fmin(τ1, τ2) =
F (σ1, σ2). For s ∈ {1, 2}, let vs be a vector such that vs(i) = τs(i) if i ∈ Dτs and
vs(i) = k + 1 otherwise. Given τ1, τ2, recall that F ∗(τ1, τ2) is exactly the L1 distance
between the corresponding vectors v1, v2. If i ∈ Z = Dτ1 ∩Dτ2 , then |v1(i)− v2(i)| =
|σ1(i) − σ2(i)|. If i ∈ S = Dτ1 \ Dτ2 , then |v1(i) − v2(i)| = |τ1(i) − (k + 1)| =
|σ1(i) − (k + 1)| ≤ |σ1(i) − σ2(i)|, since σ2(i) ≥ k + 1 > τ1(i) = σ1(i). The case of
i ∈ T = Dτ2 \Dτ1 is similar. Thus, for every i, we have |v1(i)−v2(i)| ≤ |σ1(i)−σ2(i)|.
It follows by definition that F ∗(τ1, τ2) ≤ F (σ1, σ2) = Fmin(τ1, τ2). This proves the
first inequality.

We now prove the second inequality. First, we have

Fmin(τ1, τ2) =
∑
i∈Z

|σ1(i) − σ2(i)| +
∑
i∈S

|σ1(i) − σ2(i)| +
∑
i∈T

|σ1(i) − σ2(i)|.(20)

On the other hand, we have

F ∗(τ1, τ2) =
∑
i∈Z

|τ1(i) − τ2(i)| +
∑
i∈S

|τ1(i) − (k + 1)| +
∑
i∈T

|(k + 1) − τ2(i)|.(21)

Furthermore, if z = |Z|, note that

4For metrics on permutations, such as Kendall’s tau and Spearman’s footrule, it is standard
to normalize them to lie in the interval [−1, 1], with −1 corresponding to the situation where the
permutations are the reverse of each other and with 1 corresponding to the situation where the permu-
tations are equal. However, this normalization immediately precludes one from studying metric-like
properties.



COMPARING TOP k LISTS 151

∑
i∈S

|τ1(i) − (k + 1)| ≥
k∑

r=z+1

|r − (k + 1)|

= (k − z) + · · · + 1

=
(k − z)(k − z + 1)

2
.(22)

By symmetry, we also have
∑

i∈T |(k + 1) − τ2(i)| ≥ (k − z)(k − z + 1)/2.
For i ∈ Z, we have |σ1(i) − σ2(i)| = |τ1(i) − τ2(i)|, and so∑

i∈Z

|σ1(i) − σ2(i)| =
∑
i∈Z

|τ1(i) − τ2(i)|.(23)

Since σ2(i) ≥ k + 1 and τ1(i) ≤ k if and only if i ∈ S, we have, for i ∈ S, that
|τ1(i) − σ2(i)| = |τ1(i) − (k + 1)| + (σ2(i) − (k + 1)). Furthermore, since σ2 is a
permutation, the list of values σ2(i), i ∈ S, is precisely k + 1, . . . , 2k − z. Summing
over all i ∈ S yields∑

i∈S

|σ1(i) − σ2(i)| =
∑
i∈S

|τ1(i) − σ2(i)|

= 0 + 1 + · · · + (k − z − 1) +
∑
i∈S

|τ1(i) − (k + 1)|

=
(k − z − 1)(k − z)

2
+
∑
i∈S

|τ1(i) − (k + 1)|

≤ 2
∑
i∈S

|τ1(i) − (k + 1)| by (22).(24)

Similarly, we also have∑
i∈T

|σ1(i) − σ2(i)| ≤ 2
∑
i∈T

|(k + 1) − τ2(i)|.(25)

Now, using (20)–(25), we have Fmin(τ1, τ2) ≤ 2F ∗(τ1, τ2).
(3) From the formula given in Lemma 3.1, we have

K(p′)(τ1, τ2) −K(p)(τ1, τ2) = (k − z)(p′ − p)(k − z − 1).(26)

The first inequality is immediate from (26), since k ≥ z.
We now prove the second inequality. If K(p)(τ1, τ2) = 0, then τ1 = τ2, so

also K(p′)(τ1, τ2) = 0, and the second inequality holds. Therefore, assume that
K(p)(τ1, τ2) �= 0. Divide both sides of (26) by K(p)(τ1, τ2) to obtain

K(p′)(τ1, τ2)

K(p)(τ1, τ2)
= 1 +

(k − z)(p′ − p)(k − z − 1)

K(p)(τ1, τ2)
.(27)

Since 1+p′

1+p = 1 + p′−p
1+p , the second inequality would follow from (27) if we show

K(p)(τ1, τ2) ≥ (k − z)(k − z − 1)(1 + p).(28)

In the derivation of the formula for K(p)(τ1, τ2) in the proof of Lemma 3.1, we saw
that the contribution from Case 3 is (k − z)2 and the contribution from Case 4
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is p(k − z)(k − z − 1). Hence, K(p)(τ1, τ2) ≥ (k − z)2 + p(k − z)(k − z − 1) ≥
(k − z)(k − z − 1) + p(k − z)(k − z − 1) = (k − z)(k − z − 1)(1 + p), as desired.

(4) From the formula given in Lemma 3.5, we have

F (�′)(τ1, τ2) − F (�)(τ1, τ2) = 2(k − z)(�′ − �).(29)

The first inequality is immediate from (29), since k ≥ z.
We now prove the second inequality. If F (�)(τ1, τ2) = 0, then τ1 = τ2, so

also F (�′)(τ1, τ2) = 0, and the second inequality holds. Therefore, assume that
F (�)(τ1, τ2) �= 0. Divide both sides of (29) by F (�)(τ1, τ2) to obtain

F (�′)(τ1, τ2)

F (�)(τ1, τ2)
= 1 +

2(k − z)(�′ − �)

F (�)(τ1, τ2)
.(30)

Since �′−k
�−k = 1 + �′−�

�−k , the second inequality would follow from (30) if we show

F (�)(τ1, τ2) ≥ 2(k − z)(�− k).(31)

To see (31), observe that |S|+ |T | = 2(k−z) and each element in S and T contributes
at least �− k (which is positive since k < �) to F (�)(τ1, τ2).

6. An algorithmic application. In the context of algorithm design, the notion
of near metrics has the following useful application. Given r ranked lists τ1, . . . , τr
(either full lists or top k lists) of “candidates,” the rank aggregation problem [DKNS01]
with respect to a distance measure d is to compute a list τ (again, either a full list or
another top k list) such that

∑r
j=1 d(τj , τ) is minimized.

This problem arises in the context of IR, where possible results to a search query
may be ordered with respect to several criteria, and it is useful to obtain an ordering
(often a top k list) that is a good aggregation of the rank orders produced. It is argued
in [DKNS01] that Kendall’s tau and its variants are good measures to use, both in the
context of full lists and top k lists. Our experiments at the IBM Almaden Research
Center (see also section 9.1) have confirmed that, in fact, producing an ordering
with small Kendall’s tau distance yields qualitatively excellent results. Unfortunately,
computing an optimal aggregation of several full or top k lists is NP-hard for each of
the Kendall measures. In this context, our notion of an equivalence class of distance
measures comes in handy.

Proposition 6.1. Let C be an equivalence class of distance measures. If there is
at least one distance measure d in C so that the rank aggregation problem with respect
to d has a polynomial-time exact or constant-factor approximation algorithm, then for
every d′ in C, there is a polynomial-time constant-factor approximation algorithm for
the rank aggregation problem with respect to d′.

Proof. Given τ1, . . . , τr, let τ denote an aggregation with respect to d that is
within a factor c ≥ 1 of a best possible aggregation π with respect to d, that is,∑

j d(τj , τ) ≤ c
∑

j d(τj , π). Let c1, c2 denote positive constants such that for all σ, σ′

(top k or full lists, as appropriate) c1d(σ, σ′) ≤ d′(σ, σ′) ≤ c2d(σ, σ′). Also, let π′

denote a best possible aggregation with respect to d′. Then we have∑
j

d′(τj , τ) ≤
∑
j

c2d(τj , τ) ≤ c
∑
j

c2d(τj , π)

≤ cc2
∑
j

d(τj , π
′) ≤ cc2

c1

∑
j

d′(τj , π′).
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Via an application of minimum-cost perfect matching, the rank aggregation prob-
lem can be solved optimally in polynomial time for any of the F (�) metrics. Together
with Theorem 5.1, this implies polynomial-time constant-factor approximation algo-
rithms for the rank aggregation problem with respect to the Kendall measures.

7. Other approaches.

7.1. Spearman’s rho. Spearman’s rho is the L2 distance between two permu-
tations. Formally,

ρ(σ1, σ2) =

(
n∑

i=1

|σ1(i) − σ2(i)|2
)1/2

and it can be shown that ρ(·, ·) is a metric.5 The maximum value of ρ(σ1, σ2) is

(n(n+ 1)(2n+ 1)/3)
1
2 , which occurs when σ1 is the reverse of σ2. Spearman’s rho is a

popular metric between permutations. Analogous to the footrule case, we can define
the notions of ρmin, ρavg, and ρ(�). They are not in the big equivalence class for the
following reason. Consider the case where k = n, that is, where we are considering
full lists, which are permutations of all of the elements in a fixed universe. In this
case, we need only consider ρ, since ρmin, ρavg, and ρ(�) all equal ρ. But the maximum

value of F ∗ is Θ(n2) and that of ρ is Θ(n
3
2 ). Therefore, ρmin, ρavg, and ρ(�) cannot be

in the same equivalence class as F ∗. What if we consider normalized versions of our
distance measures, as discussed after Theorem 5.1? We now show that the normalized
versions of ρmin, ρavg, and ρ(�) are not in the normalized version of the big equivalence
class. If d is a distance measure, we will sometimes denote the normalized version of
d by ḋ.

Proposition 7.1. The distance measures ρmin, ρavg, and ρ(�) do not belong to
the big equivalence class, even if all distance measures are normalized.

Proof. As before, we consider full lists. We will show that Ḟ ∗ and ρ̇ do not bound
each other by constant multiples. We will present a family of pairs of full lists, one for
each n, such that Ḟ ∗(σ1, σ2) = Θ(1/n) and ρ̇(σ1, σ2) = Θ(1/n

3
4 ). For every n, let r =

�√n�. Assume n is large enough so that n ≥ 2r. Define the permutation σ1 so that the
elements in order are 1, . . . , n, and define the permutation σ2 so that the elements in
order are r+1, . . . , 2r, 1, . . . , r, 2r+1, . . . , n. The unnormalized versions of Spearman’s
footrule and Spearman’s rho can be easily calculated to be F ∗(σ1, σ2) = 2r2 = Θ(n)

and ρ(σ1, σ2) = (2r)
3
2 = Θ(n

3
4 ). As we noted, the maximum value of F ∗ is Θ(n2) and

that of ρ is Θ(n
3
2 ). Therefore, Ḟ ∗(σ1, σ2) = Θ(1/n) and ρ̇(σ1, σ2) = Θ(1/n

3
4 ). Thus

Ḟ ∗ and ρ̇ cannot bound each other by constant multiples, so ρ̇min, ρ̇avg, and ρ̇(�) do
not belong to the normalized version of the big equivalence class.

7.2. The intersection metric. A natural approach to defining the distance
between two top k lists τ1 and τ2 is to capture the extent of overlap between Dτ1 and
Dτ2 . We now define a more robust version of this distance measure. For 1 ≤ i ≤ k,
let τ (i) denote the restriction of a top k list to the first i items. Let

δ
(w)
i (τ1, τ2) = |D

τ
(i)
1

∆D
τ
(i)
2

|/(2i).

Finally, let

5Spearman’s rho is usually defined without the exponent of 1
2
, that is, without the square root.

However, if we drop the exponent of 1
2
, then the resulting distance measure is not a metric, and is

not even a near metric.
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δ(w)(τ1, τ2) =
1

k

k∑
i=1

δ
(w)
i (τ1, τ2).

(Here, ∆ represents the symmetric difference. Thus, X∆Y = (X \ Y ) ∪ (Y \X).) It
is straightforward to verify that δ(w) lies between 0 and 1, with the maximal value of
1 occurring when Dτ1 and Dτ2 are disjoint. In fact, δ(w), as defined above, is just one

instantiation of a more general paradigm: any convex combination of the δ
(w)
i ’s with

strictly positive coefficients yields a metric on top k lists.
We now show that the distance measure δ(w) is a metric.
Proposition 7.2. δ(w)(·, ·) is a metric.
Proof. It suffices to show that δ

(w)
i (·, ·) is a metric for 1 ≤ i ≤ k. To show

this, we show that for any three sets A,B,C, we have |A∆C| ≤ |A∆B| + |B∆C|.
For x ∈ A∆C, assume without loss of generality that x ∈ A and x /∈ C. We have
two cases: if x ∈ B, then x ∈ B∆C and if x /∈ B, then x ∈ A∆B. Either way,
each x ∈ A∆C contributes at least one to the right-hand side, thus establishing the
inequality.

Since δ(w) is bounded (by 1), and F ∗ is not bounded, it follows that δ(w) is not
in the big equivalence class. Of course, δ(w) is normalized; we now show that δ(w) is
not in the normalized version of the big equivalence class.

Proposition 7.3. δ(w) does not belong to the equivalence class, even if all dis-
tance measures are normalized.

Proof. Let τ1 be the top k list where the top k elements in order are 1, 2, . . . , k,
and let τ2 be the top k list where the top k elements in order are 2, . . . , k, 1. The nor-
malized footrule can be calculated to be Ḟ ∗(τ1, τ2) = Θ(1/k), whereas δ(w)(τ1, τ2) =

(1/k)
∑k

i=1 1/i = Θ((ln k)/k). Therefore, δ(w) and Ḟ ∗ cannot bound each other by
constant multiples, and so δ(w) does not belong to the normalized version of the big
equivalence class.

7.3. Goodman and Kruskal’s gamma. Goodman and Kruskal [GK54] have
defined a “correlation statistic” for rank orders (and partial orders), which can be
used to define a distance measure for top k lists. Let τ1 and τ2 be top k lists. As
before, let P(τ1, τ2) = PDτ1∪Dτ2

be the set of all unordered pairs of distinct elements
in Dτ1 ∪ Dτ2 . Let C be the set of all pairs {i, j} ∈ P(τ1, τ2) where both τ1 and τ2
implicitly or explicitly place one of i or j above the other (τ1 and τ2 can differ on this
placement). In other words, C consists of all pairs {i, j} ∈ P(τ1, τ2) such that (1)
either i or j is in Dτ1 and (2) either i or j is in Dτ2 . Note that C consists exactly of
all pairs {i, j} that occur in the first three cases in our definition of K(p). Now define
γ(τ1, τ2) to be the fraction of pairs {i, j} ∈ C where τ1 and τ2 disagree on whether i
is ahead of j.

Goodman and Kruskal defined this quantity for rank orders τ1 and τ2 that are
more general than top k lists, namely, “bucket orders,” or total orders with ties.6

However, this quantity is not well defined for all pairs of bucket orders, since the set
C as defined above can be empty in general. In ongoing work, we are exploring the
issue of bucket orders in more detail. Here we simply remark that if τ1 and τ2 are
top k lists, then C is always nonempty, and so we do obtain a meaningful distance
measure on top k lists via this approach.

6As with Kendall’s tau and Spearman’s footrule (see footnote 4), Goodman and Kruskal’s gamma
is traditionally normalized to lie in the interval [−1, 1], although we shall not do so, so that we can
discuss metric properties.
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We now show that γ is not a metric. Let τ1 be the top 4 list where the top 4
items in order are 1,2,3,4; let τ2 be the top 4 list where the top 4 items in order are
1,2,5,6; and let τ3 be the top 4 list where the top 4 items in order are 5,6,7,8. It is
straightforward to verify that γ(τ1, τ3) = 1, γ(τ1, τ2) = 4/13, and γ(τ2, τ3) = 8/13. So
the triangle inequality fails, because γ(τ1, τ3) > γ(τ1, τ2) + γ(τ2, τ3).

We now show that γ belongs to the normalized version of our big equivalence
class and is therefore a near metric. Let τ1 and τ2 be top k lists, and let C be as
earlier. Let c = |C|, and let s be the number of pairs {i, j} ∈ C where τ1 and τ2
disagree on whether i is ahead of j. Thus, γ(τ1, τ2) = s/c. Note that since c ≤ k2,
we have s/c ≥ s/k2 = Kmin(τ1, τ2)/k

2, which equals the normalized Kmin distance
between τ1 and τ2. Finally, note that since c ≥ (k2), we have s/c ≤ s/

(
k
2

) ≤ 4s/k2 (for
k ≥ 2). Therefore, s/c is at most 4 times the normalized Kmin distance between τ1
and τ2 if k ≥ 2. (It is easy to see that γ and the normalized version of Kmin are both
0 or both 1 when k = 1.)

8. The interpolation criterion. In practical situations where one compares
two top k lists, it would be nice if the distance value has some natural real-life inter-
pretation associated with it. There are three possible extreme relationships between
two top k lists: (a) they are identical, (b) they contain the same k elements in the
exact opposite order, or (c) they are disjoint. We feel that it is desirable that the
value in case (b) be about halfway between the values in cases (a) and (c).

Let d denote any one of our distance measures between top k lists τ1 and τ2. Anal-
ogous to the normalization given in footnote 4 of section 5, let us obtain a normalized
version ν that maps the distance values into the interval [−1, 1] so that

(a) ν(τ1, τ2) = 1 if and only if τ1 = τ2;
(b) ν(τ1, τ2) = −1 if and only if Dτ1 and Dτ2 are disjoint, that is, Z = ∅.

Clearly, this can be achieved via a linear map of the form ν(τ1, τ2) = a · d(τ1, τ2) + b.
The question now is, How close to zero is ν(τ1, τ2) when τ1 and τ2 contain the same
k elements in the exact opposite order?

It turns out that the answer is asymptotic (in k) to p/(1+p) for K(p). Therefore,
it is asymptotic to 0 for Kmin = K(0). In fact, for Kmin, it is Θ(1/k). For Fmin, it is
1
2 , and for F (�), with � = k + 1

2 + α, it is Θ( α
k+α ). In fact, for F (k+ 1

2 ), where α = 0,

it is Θ(1/k2). Thus, from this viewpoint, the preferable distance measures are Kmin

and F (k+β) for β = o(k) (which includes F ∗).

9. Experiments.

9.1. Comparing Web search engines. As we mentioned earlier, one of the im-
portant applications of comparing top k lists is to provide an objective way to compare
the output of different search engines. We illustrate the use of our methods by compar-
ing the outputs of seven popular Web search engines: AltaVista (www.altavista.com),
Lycos (www.lycos.com), AllTheWeb (www.alltheweb.com), HotBot (www.hotbot.com),
NorthernLight (www.northernlight.com), AOL Search (search.aol.com), and MSN
Search (search.msn.com). Comparing the output in this manner will shed light both
on the similarities between the underlying indices and the ranking functions used by
search engines. We selected Kmin as the measure of comparison between the search
engines. This choice is arbitrary, and as we argued earlier, we could just as well have
chosen any other measure from the big equivalence class.

We made use of 750 queries, that were actually made by real users to a metasearch
engine developed at the IBM Almaden Research Center [DKNS01]. For each of these
queries, and for each of the seven Web search engines we are considering, we obtained
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Table 1
Kmin distances between search engines for k = 50.

AltaVista Lycos AllTheWeb HotBot NorthernLight AOL Search MSN Search

AltaVista 0.000 0.877 0.879 0.938 0.934 0.864 0.864
Lycos 0.877 0.000 0.309 0.888 0.863 0.796 0.790

AllTheWeb 0.879 0.309 0.000 0.873 0.866 0.782 0.783
HotBot 0.938 0.888 0.873 0.000 0.921 0.516 0.569

NorthernLight 0.934 0.863 0.866 0.921 0.000 0.882 0.882
AOL Search 0.864 0.796 0.782 0.516 0.882 0.000 0.279
MSN Search 0.864 0.790 0.783 0.569 0.882 0.279 0.000

the top 50 list.7 We then computed the normalized Kmin distance between every pair
of search engine outputs. Finally, we averaged the distances over the 750 queries.
The results are tabulated in Table 1. The values are normalized to lie between 0 and
1, with smaller values representing closer matches. Note, of course, that the table is
symmetric about the main diagonal.

Several interesting conclusions can be derived from this table. Some of the conclu-
sions are substantiated by the alliances between various search engines. (For a detailed
account of the alliances, see www.searchenginewatch.com/reports/alliances.html.)

(1) AOL Search and MSN Search yield very similar results! The reason for this
(surprising) behavior is twofold: both AOL Search and MSN Search index similar
sets of pages and probably use fairly similar ranking functions. These conclusions are
substantiated by the fact that AOL Search uses search data from OpenDirectory and
Inktomi, and MSN Search uses LookSmart and Inktomi. HotBot uses DirectHit and
Inktomi and can be seen to be moderately similar to AOL Search and MSN Search.

(2) Lycos and AllTheWeb yield similar results. Again, the reason for this is
because Lycos gets its main results from DirectHit and AllTheWeb.

(3) AltaVista and NorthernLight, since they use their own crawling, indexing, and
ranking algorithms, are far away from every other search engine. This is plausible
for two reasons: either they crawl and index very different portions of the Web or
their ranking functions are completely unrelated to the ranking functions of the other
search engines.

(4) The fact that Kmin is a near metric allows us to draw additional interesting
inferences from the tables (together with observations (1) and (2) above). For exam-
ple, working through the alliances and partnerships mentioned above, and exploiting
the transitivity of “closeness” for a near metric, we obtain the following inference.
The data services LookSmart and OpenDirectory are closer to each other than they
are to DirectHit. Given that DirectHit uses results from its own database and from
OpenDirectory, this suggests that the in-house databases in DirectHit and OpenDi-
rectory are quite different. A similar conclusion is again supported by the fact that
Lycos and HotBot are far apart, and their main results are powered by OpenDirectory
and DirectHit, respectively.

9.2. Evaluating a metasearch engine. Recall that a metasearch engine com-
bines the ranking of different search engines to produce an aggregated ranking. There
are several metasearch engines available on the Web (for a list of popular ones, see the
site searchenginewatch.com). Metasearch engines are quite popular for their coverage,
resistance to spam, and ability to mitigate the quirks of crawl. As we mentioned ear-
lier, our methods can be used to evaluate the behavior of a metasearch engine. Such

7For some queries, we had to work with a slightly smaller value of k than 50, since a search
engine returned some duplicates.
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Table 2
Kmin distance of our metasearch engine to its sources for k = 50.

AltaVista Lycos AllTheWeb HotBot NorthernLight AOL Search MSN Search

0.730 0.587 0.565 0.582 0.823 0.332 0.357

an analysis will provide evidence to whether the metasearch is highly biased towards
any particular search engine or is reasonably “close” to all the search engines.

For our purposes, we use a metasearch engine that we developed. Our metasearch
engine uses a Markov chain approach to aggregate various rankings. The underlying
theory behind this method can be found in [DKNS01]. We used a version of our
metasearch engine that combines the outputs of the seven search engines described
above. We measured the average Kmin distance of our metasearch engine’s output to
the output of each of the search engines for the same set of 750 queries. The results
are tabulated in Table 2. From this table and Table 1, we note the following. There
is a strong bias towards the AOL Search/MSN Search cluster, somewhat less bias
towards Lycos, AllTheWeb, and HotBot, and very little bias towards AltaVista and
NorthernLight. This kind of information is extremely valuable for metasearch design
(and is beyond the scope of this paper). For example, the numbers show that the
output of our metasearch engine is a reasonable aggregation of its sources—it does
not simply copy its components, nor does it exclude any component entirely. Finally,
the degree to which our metasearch engine aligns itself with a search engine depends
on the various reinforcements among the outputs of the search engines.

9.3. Correlations among the distance measures. The following experiment
is aimed at studying the “correlations” between the distance measures. We seek to
understand how much information the distance measures reveal about each other.
One of the goals of this experiment is to find empirical support for the following belief
motivated by our work in this paper: the distance measures within an equivalence
class all behave similarly, whereas different equivalence classes aim to capture different
aspects of the distance between two lists.

Let I denote the top k list where the top k elements in order are 1, 2, . . . , k.
For a distance measure d(·, ·) and a top k list τ with elements from the universe

{1, 2, . . . , 2k}, let d̂(τ) = d(τ, I). If τ is a randomly chosen top k list, then d̂(τ) is a
random variable.

Let d1 and d2 denote two distance measures. Consider the experiment where
a random top k list τ is picked. Informally, the main question we ask here is the
following: if we know d̂1(τ) (namely, the distance, according to d1, of τ to the list I),

to what extent can we predict the value of d̂2(τ)? To address this question, we use
two basic notions from information theory.

Recall that the entropy of a random variable X is

H(X) = −
∑
x

Pr[X = x] log Pr[X = x].

If we truncate the precision to two digits and use logarithms to the base 10 in the
entropy definition, then for each d, the quantity H(d̂(τ)) is a real number between 0
and 2. In words, when τ is picked at random, then there is up to “2 digits worth of
uncertainty in the value of d̂(τ).”



158 RONALD FAGIN, RAVI KUMAR, AND D. SIVAKUMAR

Table 3
Conditional entropy values for pairs of distance measures. The entry (d1, d2) of the table may

be interpreted as the average uncertainty in d̂2(τ), assuming we know d̂1(τ).

δ δ(w) ρ(k+1) γ F ∗ Fmin Kmin Kavg K(1)

δ 0.000 1.409 1.469 1.415 1.203 1.029 1.235 1.131 0.991

δ(w) 0.580 0.000 1.193 1.282 0.863 0.945 1.087 1.091 1.043

ρ(k+1) 0.530 1.083 0.000 1.057 0.756 0.834 0.670 0.773 0.760
γ 0.503 1.197 1.082 0.000 1.039 1.025 0.533 0.525 0.507
F ∗ 0.497 0.985 0.989 1.246 0.000 0.434 0.848 0.845 0.819
Fmin 0.388 1.132 1.131 1.297 0.499 0.000 0.885 0.748 0.650
Kmin 0.490 1.170 0.863 0.700 0.808 0.780 0.000 0.454 0.500
Kavg 0.421 1.210 1.002 0.729 0.841 0.680 0.490 0.000 0.354

K(1) 0.361 1.240 1.068 0.789 0.894 0.660 0.615 0.433 0.000

The conditional entropy of a random variable X with respect to another random
variable Y is

H(X | Y ) =
∑
y

Pr[Y = y]H(X | Y = y).

Informally, the conditional entropy measures the uncertainty in X, assuming that we
know the value of Y . In our case, we ask the question: For a random τ , if we know
the value of d̂1(τ), how much uncertainty is left in the value of d̂2(τ)?8

For all pairs of our distance measures d1 and d2, we measure H(d̂2(τ) | d̂1(τ)), and
present the results in Table 3. We consider a universe of 20 elements and let k = 10.
(These choices enable us to exhaustively enumerate all possible top k lists and perform

our experiments on them.) The entry (d1, d2) in this table denotes H(d̂2(τ) | d̂1(τ)).

Therefore, the closer the value is to 2, the less information d̂1 reveals about d̂2. The
value of 1 is an interesting case, since this roughly corresponds to saying that on the
average, given d̂1(τ), one can predict the leading digit of d̂2(τ).

Some conclusions that can be drawn from the table are the following:
(1) Every distance measure reveals a lot of information about symmetric difference

δ. A reason for this is that δ uses only 10 distinct values between 0 and 1, and is not
sharp enough to yield finer information. This suggests that the other measures are
preferable to symmetric difference.

(2) The distance measure ρ(k+1) reveals much information about the other mea-
sures, as is evident from the row for ρ(k+1); on the other hand, as can be seen from the
column for ρ(k+1), the other measures do not reveal much information about ρ(k+1).
The weighted symmetric difference metric δ(w) seems fairly unrelated to all the others.

(3) The measures in the big equivalence class all appear to have a stronger cor-
relation to themselves than to the ones not in the class. In fact, each of the footrule
measures Fmin, F

∗ is strongly correlated with the other footrule measures, as is evi-
dent from the entries corresponding to their submatrix. Similarly, the Kendall mea-
sures Kmin,Kavg,K

(1) are all strongly correlated. This suggests that the footrule and

8We chose conditional entropy instead of statistical notions like correlation for the following
reason. Correlation (covariance divided by the product of standard deviations) measures linear
relationships between random variables. For example, if X = αY + β for some constants α and β,
then the correlation between X and Y is zero. On the other hand, consider X = αY 2+βY +γ; even
though given the value of Y , there is absolutely no uncertainty in the value of X, their correlation
is not zero. Conditional entropy, however, can measure arbitrary functional relationships between
random variables. If X = f(Y ) for any fixed function f , then H(X | Y ) = 0.



COMPARING TOP k LISTS 159

Kendall measures form two “mini”-equivalence classes that sit inside the big equiva-
lence class.

(4) The distance measure γ reveals much information about the Kendall measures,
and vice versa. This is to be expected, since γ is very similar to Kmin, except for the
normalization factor.

10. Conclusions. We have introduced various distance measures between top
k lists and have shown that these distance measures are equivalent in a very natural
sense. We have also introduced a robust notion of “near metric,” which we think
is interesting in its own right. We have shown that each of our distance measures
that is not a metric is a near metric. Our results have implications for IR (since
we can quantify the differences between search engines, by measuring the difference
between their outputs). Our results also have implications for algorithm design (since
we can use our machinery to obtain polynomial-time constant-factor approximation
algorithms for the rank aggregation problem).
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