CSE522 - Learning Theory - Homework Exercise 1

Let \mathcal{X} be an instance space, let \mathcal{Y} be a label set, let \mathcal{D} be a probability distribution over $\mathcal{X} \times \mathcal{Y}$, and let ℓ be a loss function that takes values in $[0, C]$.

1. Let $\mathcal{H}=\left\{h_{i}\right\}_{i=1}^{\infty}$ be a countable hypothesis class and let S be a sample of m examples drawn i.i.d. from the distribution \mathcal{D}. Prove that for any $\delta>0$, with probability at least $1-\delta, S$ satisfies

$$
\forall i \quad \ell\left(h_{i} ; \mathcal{D}\right) \leq \ell\left(h_{i} ; S\right)+C \sqrt{\frac{\log \left(\frac{1}{\delta}\right)+2 \log (i+1)}{2 m}}
$$

2. Let $\mathcal{H}=\left\{h_{i}\right\}_{i=1}^{k}$ be a finite hypothesis space. Let h^{\star} be the hypothesis with the smallest risk in \mathcal{H}, and assume that

$$
\forall h \in \mathcal{H} \backslash\left\{h^{\star}\right\} \quad \ell(h ; \mathcal{D})-\ell\left(h^{\star} ; \mathcal{D}\right)>\frac{C}{100}
$$

What size sample guarantees that h^{\star} is also the empirical risk minimizer, with probability at least 0.99 ?
3. Let h_{1} and h_{2} be two hypotheses such that

$$
\left|\ell\left(h_{1} ; \mathcal{D}\right)-\ell\left(h_{2} ; \mathcal{D}\right)\right|>\frac{C}{100} .
$$

We can sample as many examples as we need, but each example costs $\$ 1$. Propose a greedy algorithm that finds the risk minimizer with probability at least 0.99 , while spending as little as possible. (Hint: prove a bound that holds uniformly for different sample sizes).
4. Let $\mathcal{H}=\left\{h_{i}\right\}_{i=1}^{k}$ be a finite hypothesis class and let S_{1}, \ldots, S_{k} be independent samples from \mathcal{D}^{m} (namely, each S_{i} contains m independent examples). Let $\delta>0$ and $\epsilon>0$ be such that for any i, with probability $1-\delta$, we know that

$$
\left|\ell\left(h_{i} ; \mathcal{D}\right)-\ell\left(h_{i} ; S_{i}\right)\right| \leq \epsilon
$$

Consider the event

$$
\forall i \in\{1, \ldots, k\} \quad\left|\ell\left(h_{i} ; \mathcal{D}\right)-\ell\left(h_{i} ; S_{i}\right)\right| \leq \epsilon
$$

(a) Lower-bound the probability of this event using a union bound. Note that this bound holds even if all of the empirical risks are computed using one sample, S_{1}.
(b) Calculate the exact probability of this event (use the fact that the k samples are independent) and upper bound this probability using a second-order Taylor expansion.
(c) Compare the lower bound to the upper-bound and conclude that it doesn't make much difference if we use k independent samples or one sample.

