CSE522 - Learning Theory - Homework Exercise 2

Assume that \mathcal{Y} (the range of each hypothesis) is \mathbb{R} .

- 1. Let \mathcal{H} and \mathcal{H}' be hypothesis classes such that $\mathcal{H} \subseteq \mathcal{H}'$. Prove that $\mathcal{R}_m(\mathcal{H}) \leq \mathcal{R}_m(\mathcal{H}')$.
- 2. Let \mathcal{H} be a hypothesis class. For any $\alpha \in \mathbb{R}$ define $\mathcal{H}_{\alpha} = \{\alpha h : h \in \mathcal{H}\}$. Prove that $\mathcal{R}_m(\mathcal{H}_{\alpha}) = |\alpha| \mathcal{R}_m(\mathcal{H})$.
- 3. Let \mathcal{H} be a hypothesis class and let $\overline{\mathcal{H}}$ be the convex hull of \mathcal{H} (namely, each function in $\overline{\mathcal{H}}$ is a convex combination of a finite set of functions from \mathcal{H}). Prove that $\mathcal{R}_m(\mathcal{H}) = \mathcal{R}_m(\overline{\mathcal{H}})$.
- 4. Let $\mathcal{H}_1, \ldots, \mathcal{H}_k$ be arbitrary hypothesis classes. Let $\sum_{i=1}^k \mathcal{H}_k$ denote the set $\{\sum_{i=1}^k h_i : h_i \in \mathcal{H}_i\}$. Prove that $\mathcal{R}_m(\sum_{i=1}^k \mathcal{K}_i) \leq \sum_{i=1}^k \mathcal{R}_m(\mathcal{H}_i)$.
- 5. Let \mathcal{H} and \mathcal{H}' be hypothesis classes. Either prove or give a counter example to $\mathcal{R}_m(\mathcal{H} \cup \mathcal{H}') \leq \mathcal{R}_m(\mathcal{H}) + \mathcal{R}_m(\mathcal{H}')$.
- 6. Let \mathcal{H} be a hypothesis class. Either prove or give a counter example to $\mathcal{R}_m(\mathcal{H}\cup-\mathcal{H}) \leq 2\mathcal{R}_m(\mathcal{H})$.