CSE522 - Learning Theory - Homework Exercise 3

1. Choose 4 of the following 5 hypothesis classes and formally calculate their VC dimension:
(a) $\mathcal{X}=\mathbb{R}, \mathcal{H}$ is the union of two intervals. In other words, each $h \in \mathcal{H}$ is defined by four reals $\alpha, \beta, \gamma, \delta$ as

$$
h_{\alpha, \beta, \gamma, \delta}(x)=\left\{\begin{array}{ll}
+1 & \text { if } x \in[\alpha, \beta] \cup[\gamma, \delta] \\
-1 & \text { otherwise }
\end{array} .\right.
$$

(b) \mathcal{X} is the set of all intervals on the reals, \mathcal{H} is the real line. In other words, each $h \in \mathcal{H}$ is defined by a real α as

$$
h_{\alpha}([a, b])=\left\{\begin{array}{ll}
+1 & \text { if } \alpha \in[a, b] \\
-1 & \text { otherwise }
\end{array} .\right.
$$

(c) $\mathcal{X}=\mathbb{R}^{2}, \mathcal{H}$ is the set of axis-parallel squares (with equal height and width). In other words, each $h \in \mathcal{H}$ is defined by three reals α, β, γ as

$$
h_{\alpha, \beta, \gamma}(x)= \begin{cases}+1 & \text { if } x_{1} \in[\alpha, \alpha+\gamma] \text { and } x_{2} \in[\beta, \beta+\gamma] \\ -1 & \text { otherwise }\end{cases}
$$

(d) $\mathcal{X}=\mathbb{R}^{2}, \mathcal{H}$ is the set of unit balls. In other words, each $h \in \mathcal{H}$ is defined by a point $c \in \mathbb{R}^{2}$ as

$$
h_{c}(x)= \begin{cases}+1 & \text { if }\|x-c\|_{2} \leq 1 \\ -1 & \text { otherwise }\end{cases}
$$

(e) \mathcal{X} is the positive integers, \mathcal{H} has 7 functions: $h_{1}, h_{2}, h_{3}, h_{5}, h_{7}, h_{11}, h_{13}$, where

$$
h_{i}(x)= \begin{cases}+1 & \text { if } i \text { divides } x \\ -1 & \text { otherwise }\end{cases}
$$

2. Let \mathcal{H}_{1} and \mathcal{H}_{2} be two hypothesis classes with $\operatorname{VC}\left(\mathcal{H}_{1}\right)=d_{1}$ and $\operatorname{VC}\left(\mathcal{H}_{2}\right)=d_{2}$.
(a) Prove an upper bound on $\operatorname{VC}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right)$ (hint: use the fact that the growth function is less than $\left.(e m / d)^{d}\right)$.
(b) Prove an upper bound on $\operatorname{VC}\left(\mathcal{H}_{1} \cdot \mathcal{H}_{2}\right)$, where $\mathcal{H}_{1} \cdot \mathcal{H}_{2}$ is the class that includes hypotheses of the form $h(x)=h_{1}(x) h_{2}(x)$ for all $h_{1} \in \mathcal{H}_{1}, h_{2} \in \mathcal{H}_{2}$.
