
CSE522, Winter 2011, Learning Theory Lecture 11 - 02/03/2011

Growth Function and VC-dimension

Lecturer: Ofer Dekel Scribe: Xu Miao

1 Review of VC theory

Our primary interest so far is deriving the generalization bound for the binary classifiers. We have studied
the Rademacher complexity techniques, and shown that the VC bound is an upper bound of the Rademacher
complexity bound. For a binary classification with 0-1 loss l, we have

Rm(l ◦H) ≤

√

2 log gH(m)

m
(1)

where H = {h : X→{+1,−1}} is a hypothesis space. The growth function gH(m) is defined to be the
number of ways the hypothesis space H assign an arbitrary m point sample set (Definition 1).

Definition 1.

gH(m) = max
S∈Xm

∣

∣{(h(x1), h(x2), · · · , h(xm))}h∈H

∣

∣

The growth function can be bounded by applying Sauer’s Lemma, i.e., gH(m) ≤
∑d

i=0

(

m

i

)

≤
(

em
d

)d
=

O(md), where d is the VC-dimension of H (Definition 2)

Definition 2.

V Cdim(H) = max {|S| : H shatters S} = max {m : gH(m) = 2m}

In summary, the VC bound is stated in Theorem 3.

Theorem 3. ∀δ > 0, w.p. ≥ 1− δ, over a random sampling of S ∼ Dm, ∀h ∈ H, we have

l(h;D) ≤ l(h;S) +

√

2d log(em/d)

m
+

√

log(1/δ)

2m

If d < ∞, this universal convergence is attained as the number of samples goes to infinity. Gener-
ally speaking, VC bound is looser than Rademacher complexity bound because Rademacher complexity is
distribution dependent, while the growth function is not (see Definition 1).

2 Calculating Growth Function and VC dimension

2.1 Interval Classifiers

X ∈ R, HI = {ha,b : a ≤ b ∈ R}, where ha,b(x) =

{

+1, a ≤ x ≤ b
−1, otherwise

In last class, we have proven that V Cdim(HI) = 2, and gHI
(m) =

∑2

i=0

(

m
i

)
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2.2 Axis Parallel Rectangle Classifiers

X = R2, HR = {hl,r,t,b : l ≤ r, b ≤ t ∈ R}, where

hl,r,t,b(x) =

{

+1, if x is inside of the rectangle (l, r, t, b)
−1, otherwise

In last class, we have proven that V Cdim(HR) = 4.

2.3 Linear Classifiers

X = Rd, HL =
{

hw ≡ sign (< w, · >) : w ∈ Rd
}

is the hypothesis space for linear classifiers.
We first consider the following question, how many different sections of the space Rd m random hyper-

planes can divide at most. Let Φd(m) denote this number.
For d = 2 dimentional space, Φd(m) is depicted by Figure 1.

Figure 1: The number of sections divided by lines

Φ2(0) = 1

Φ2(1) = 2

· · ·

Φ2(m) ≤ Φ2(m− 1) +m

The last inequality holds because the m-th new line intersects at most (m− 1) previous lines that produces
at most m new sections. Therefore, Φ2(m) =a.s. 1 +

∑m

i=1
i =

(

m

0

)

+
(

m

1

)

+
(

m

2

)

. The equality holds because
the probability of overlaps of random line intersections goes to 0.

Theorem 4. Φd(m) ≤
∑d

i=0

(

m
i

)

.

Proof. m− 1 hyperplanes divide Rd into at most Φd(m− 1) sections. The m-th plane will intersect at most
m− 1 hyperplanes. These m− 1 hyperplanes are projected onto the m-th hyperplane (Rd−1) and divide this
space into at most Φd−1(m− 1) sections, which is also the maximum number of sections in Rd intersecting
with the m-th hyperplane and divided into 2 for each. Therefore,

Φd(m) = Φd(m− 1) + Φd−1(m− 1)

≤
d

∑

i=0

(

m− 1

i

)

+

d−1
∑

i=0

(

m− 1

i

)

=

d
∑

i=0

(

m− 1

i

)

+

d
∑

i=0

(

m− 1

i− 1

)

=

d
∑

i=0

(

m

i

)
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For linear classifiers, i.e., hw(x) = sign (< w, x >), x is a hyperplane that divides the parameter space
Rd into two sections (Figure 2). Any w1 from the smae side of the plane as x will assign x positive,
i.e.,hw1

(x) = +1. Any w2 from the opposite side will assign x negative, i.e., hw2
(x) = −1. If there are m

Figure 2: x divides w space into two sections each assigning x in one way.

samples that divide the space into multiple sections, any w from the same section will assign S the same
way. According to Theorem 4, there are at most Φd(m) sections. Therefore, gHL

(m) ≤ Φd(m). Now, we
prove that they are actually equal.

Theorem 5. For X = Rd, V Cdim(HL) = d.

Proof. I). we prove V Cdim(HL) ≥ d by an example. For S =
{

ei = (I{1=i}, I{2=i}, · · · , I{d=i}) : 1 ≤ i ≤ d
}

,
to assign y = {+1,−1, . . . ,+1}, we can set < w, ei >= wi = yi, ∀i. Therefore, HL does shatter d samples.

II). we prove V Cdim(HL) < d + 1 by proving that ∀d + 1 points, ∃y ∈ {+1,−1}d+1
, s.t., ∄h ∈

HL, ∀i, h(xi) = yi. Let x1, x2, · · · , xd+1 be arbitrary points in Rd, ∃i. s.t. xi is a linear combination of

the rest. Without loss of generality, let xd+1 =
∑d

i=1
αixi. Therefore, < w, xd+1 >=< w,

∑d

i=1
αixi >=

∑d

i=1
αi < w, xi >. Consider y = (sign (α1) , · · · , sign (αd) ,−1), assume that ∃w, ∀i, sign (< w, xi >) = yi,

then sign (< w, xd+1 >) = sign
(

∑d

i=1
αi < w, xi >

)

= +1 that conflicts with yd+1.

Overall, V Cdim(HL) = d.

2.4 Affine Classifiers

X = Rd, HA =
{

hw,b ≡ sign (< w, · > +b) : w ∈ Rd, b ∈ R
}

.

Lemma 6. (Radon’s Lemma): Any d + 2 points in Rd can be partitioned into disjoint sets N and P , s.t.,
convex(N)

⋂

convex(P ) 6= ∅.

Proof. ∀x1, x2, · · · , xd+2, ∃nontrivialα1, α2, · · · , αd+2 ∈ R, s.t.,

d+2
∑

i=0

αixi =
−→
0 d equalities

d+2
∑

i=0

αi = 0 1 equality

We split the points into two disjoint sets, N = {i : αi < 0} and P = {i : αi ≥ 0}.
∑

i∈N

(−αi) =
∑

i∈P

αi ≡ β > 0

∑

i∈N

(−αi)xi =
∑

i∈P

αixi

By combining these eqaulities, we obtain
∑

i∈N (−αi

β
)xi =

∑

i∈P (
αi

β
)xi. The LHS is in convex(N), and the

RHS is in convex(P ), i.e., convex(N)
⋂

convex(P ) 6= ∅.
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Theorem 7. For X = Rd, V Cdim(HA) = d+ 1

Proof. I). HA shatter S =
{

e1, e2, · · · , ed,
−→
0
}

, where
−→
0 is the origin. The argument is similar to part I) in

the proof of Theorem 5.
II). We prove that ∀S = {x1, x2, · · · , xd+2}, ∃y ∈ {+1,−1}d+2

, s.t., ∄h ∈ HA, ∀i, h(xi) = yi.
According to Radon’s Lemma, ∃nontrivialα1, · · · , αd+2 ∈ R, that

∑

i∈N (−αi

β
)xi =

∑

i∈P (
αi

β
)xi. There-

fore,

∀w ∈ Rd, b ∈ R,

〈

w,
∑

i∈N

(−
αi

β
)xi

〉

+ b =

〈

w,
∑

i∈P

(
αi

β
)xi

〉

+ b (2)

For y that yi∈N = −1, and yi∈P = +1, we prove that ∄h ∈ HA ∀i h(xi) = yi by contradiction.
We Assume that there is a w and a b such that ∀i, sign (< w, xi > +b) = yi, i.e. < w, xi∈N > +b < 0 and

< w, xi∈P > +b > 0. Since αi∈N < 0, αi∈P > 0 and β > 0, we obtain

〈

w,
∑

i∈N

(−
αi

β
)xi

〉

+ b =
∑

i∈N

(−
αi

β
)(〈w, xi〉+ b) < 0

〈

w,
∑

i∈P

(
αi

β
)xi

〉

+ b =
∑

i∈P

(
αi

β
)(〈w, xi〉+ b) > 0

⇒

〈

w,
∑

i∈N

(−
αi

β
)xi

〉

+ b 6=

〈

w,
∑

i∈P

(
αi

β
)xi

〉

+ b

This contradicts with Equation 2. Therefore, ∄h ∈ HA ∀i h(xi) = yi.
Overall, V Cdim(HA) = d+ 1.

2.5 Bit Classifiers

So far, we have seen that the VC dimension coincides with the geometric dimension of the hypothesis space
for HI ,HR,HL and HA. However, it is not true in general. Here is a negative example.

X = N = {1, 2, 3, · · · }, HB = {hα : α ∈ R}, where

hα(x) =

{

+1, if the x-th bit in the binary representation of α is 1
−1, if the x-th bit in the binary representation of α is 0

Obviously, ∀m,S ∈ Xm can be shattered by HB, therefore V Cdim(HB) = ∞.
In general, one can use space filling curves, e.g., Peano curves, to encode arbitrary dimensional real space

into one dimensional real line. Hence, the geometric dimension does not necessarily imply the VC dimension.

2.6 Union Classifiers

HK
U =

{

h̃ ≡
⋃K

i=1
hi : ∀ihi ∈ H

}

, where

h̃(x) =
K
⋃

i=1

hi(x) =

{

+1, if ∃i, s.t. hi(x) = +1
−1, if ∀i, s.t. hi(x) = −1

Lemma 8. (Blumer, Ehrentrecht,Haussler,Warmuth 89’) let V Cdim(H) = d, K ≥ 1

V Cdim(HK
U ) ≤ 2Kd log(5K)
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Proof.

gHK

U

(m) ≤ (gH(m))
K ≤

(em

d

)dK

V Cdim(HK
U ) = max

{

m : gHK

U

(m) = 2m
}

≤ min

{

m :
(em

d

)dK

≤ 2m
}

= min V

We can verify that m = 2Kd log(5K) ∈ V , for K ≥ 1. Therefore, V Cdim(HK
U ) ≤ 2Kd log(5K)
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