
CSE522, Winter 2011, Learning Theory Lecture 12 - 02/10/2011

PAC-Bayes
Lecturer: Ofer Dekel Scribe: Aniruddh Nath

1 Setting

Assume binary classification: Y = {+1,−1}, loss is 0-1.

Algorithm:

1. Define prior distribution P on H

2. Get sample S ∼ Dm

3. Define posterior distribution Q on H

Note that distributions play two different semantic roles:

• D is a model of the world;

• P,Q express our beliefs about the correct answer.

Definition 1. The expected risk of Q is: `(Q;D) = Eh∼D(`(h;D))

Definition 2. The Gibbs classifier hGibbs(Q)(x)→y is defined by the following procedure:

1. Sample h ∼ Q

2. Get x

3. Output h(x)

E(x,y)∼D
[
`(hGibbs(Q); (x, y))

]
= `(Q;D)

Example 1

• H = {h1, . . . , hk},

• P = uniform over H,

• Q = 1 if h = hERM , and 0 otherwise.

Example 2 Bayesian algorithms:

Applying Bayes rule, P(h|S) =
P(S|h)P(h)

P(S)

where

• P(h|S) is the posterior,
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• P(S|h) is the likelihood of the data (S) given the hypothesis (h),

• P(h) is the prior probability of hypothesis h, and

• P(S) can be thought of as a normalization constant, whose purpose is to make the probabilities add
up to 1.

Example 3

• H is the set of linear classifiers in the n-dimensional unit ball,

• P is the uniform distribution over H,

• Q is the uniform distribution on all w ∈ H such that 〈w, w̃〉 ≥ 0, where w̃ ∈ H is the output of your
favorite learning algorithm (e.g. svm, erm).

2 Kullback-Leibler divergence

This is our new complexity measure, roughly analogous to Rademacher complexity and VC dimension.

Definition 3. If Q and P are two distributions on the same space, the Kullback-Leibler divergence
between them is:

KL(Q ‖ P ) = Ez∼Q ln
Q(z)
P (z)

Origins of KL (Information Theory)

Alice is sending a binary message to Bob over a digital channel. They each have a copy of a codebook, which
maps symbols in the alphabet {a, . . . , z} to binary strings.

A variable length prefix-free code uses shorter strings to encode more frequent letters. Since no string in
the code is a prefix of any other string, there is never ambiguity about where one string ends and the next
begins. The codebook is chosen to minimize Ex∼P [#bits for x], where P is a distribution over {a, . . . , z}.

Theorem 4. Shannon’s coding theorem: the best thing to do is to use log2
1

P (x) bits to encode x. The
expected number of bits per letter is then:

Ex∼P [#bits] = Ex∼P

[
log2

1
P (x)

]
=

z∑
x=a

P (x) log2

1
P (x)

, H(P )

where H(P ) is the entropy of P.

What happens if the codebook was created assuming that the symbols were distributed according to P ,
but the real distribution turns out to be Q instead?

Ex∼Q [#bits] = Ex∼Q

[
log2

1
P (x)

]
= Ex∼Q

[
log2

Q(x)
P (x)

+ log2

1
Q(x)

]
= KL(Q ‖ P ) +H(Q)

KL(Q ‖ P ) is the extra number of bits expected per letter from using P instead of Q to create the codebook.
(Note that in information theory, KL divergence is defined in base 2 rather than base e. The units of

information in base e are nats.)
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KL Divergence in PAC-Bayes

(Back to base e.)

Example 4 P is uniform over {h1, . . . , hk}; Qh̃(h) = 1 if h = h̃, and 0 otherwise.

KL(Q ‖ P ) = EQ ln
Q(h)
P (h)

= 1. ln
1

1/k
= ln k

Example 5 P is uniform over {h1, . . . , hk−1}; Q is a distribution such that Q(hk) > 0.

KL(Q ‖ P ) = EQ ln
Q(h)
P (h)

= . . .+Q(hk) ln
Q(hk)

0
=∞

(By convention, 1
0 =∞ and 0. ln 0

0 = 0.)

Example 6 P is the uniform distribution over linear classifiers in the n-dimensional unit ball, and Q is
the uniform distribution over linear classifiers in some n-dimensional unit hemisphere.

KL(Q ‖ P ) = EQ ln
Q(h)
P (h)

= EQ ln
2P (h)
P (h)

= ln 2

Special case: α, β ∈ [0, 1]

KL(α ‖ β)↔ KL(Bernoulli(α) ‖ Bernoulli(β)) = α ln
α

β
+ (1− α) ln

1− α
1− β

= 0

Theorem 5. KL(Q||P ) ≥ 0

KL(1 ‖ 0) = 1 ln
1
0

+ 0 ln
0
1

=∞

KL(0 ‖ 1) = 0 ln
0
1

+ 1 ln
1
0

=∞

KL(1 ‖ 1
2

) = 1 ln
1
1
2

+ 0 ln
0
1
2

= ln 2

Theorem 6. (McAllester 2003/1999)
∀D,∀H,∀P (prior on H), with probability ≥ 1− δ over the sampling of S ∼ Dm,

∀Q(distribution on H) KL(`(Q;S) ‖ `(Q;D)) ≤
KL(Q ‖ P ) + ln m+1

δ

m

Corollary 7.

`(Q;D) ≤ `(Q;S) +

√
2`(Q;S).

(
KL(Q ‖ P ) + ln m+1

δ

)
m

+
2
(
KL(Q ‖ P ) + ln m+1

δ

)
m
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Proof. (of theorem 6)

Define: Z = Eh∼P e
m.KL(`(h;S)‖`(h;D))

Part I) KL(`(Q;S) ‖ `(Q;D)) ≤
KL(Q ‖ P ) + ln

(
1
δES [Z]

)
m

Part II) ES [Z] ≤ m+ 1

I)

By Markov’s inequality, ∀a, P[Z > a] ≤ ES [Z]
a

Plugging in a =
ES [Z]
δ

, P[Z > a] ≤ δ

With probability ≥ 1− δ, Z ≤ a =
ES [Z]
δ

⇒ ln(Z) ≤ ln
(

ES [Z]
δ

)

ln(Z) = ln
(
Eh∼P e

m.KL(`(h;S)‖`(h;D))
)

= ln
(

Eh∼Q
P (h)
Q(h)

em.KL(`(h;S)‖`(h;D))

)
Upper bound using Jensen’s inequality + concavity of ln:

ln(Z) ≥ Eh∼Q

(
ln
P (h)
Q(h)

+ ln em.KL(`(h;S)‖`(h;D))

)
= −KL(Q ‖ P ) + Eh∼Q [m.KL(`(h;S) ‖ `(h;D))]

≥ = −KL(Q ‖ P ) +m.KL(`(Q;S) ‖ `(Q;D))

II) (See lecture 13.)
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