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PAC-Bayes
Lecturer: Ofer Dekel Scribe: Aniruddh Nath

1 Setting

Assume binary classification: Y = {+1, —1}, loss is 0-1.

Algorithm:
1. Define prior distribution P on H
2. Get sample S ~ D™

3. Define posterior distribution @ on H

Note that distributions play two different semantic roles:
e D is a model of the world;

e P (@ express our beliefs about the correct answer.
Definition 1. The expected risk of Q is: £(Q; D) = Epp(4(h; D))

Definition 2. The Gibbs classifier haiwsq)(x)—y is defined by the following procedure:
1. Sample h ~ Q
2. Getx
3. Output h(zx)

Ewy)~p [((hcivns(@)i (2, 9))] = €(Q; D)

Example 1

o H={h1,..., hi},

e P = uniform over H,

e Q=1if h=hggry, and 0 otherwise.
Example 2 Bayesian algorithms:

P(S|h)P(h)

Applying Bayes rule, P(h|S) = P(S)

where

e P(h|S) is the posterior,



e P(S|h) is the likelihood of the data (S) given the hypothesis (h),
e P(h) is the prior probability of hypothesis h, and

e P(S) can be thought of as a normalization constant, whose purpose is to make the probabilities add
up to 1.

Example 3
e H is the set of linear classifiers in the n-dimensional unit ball,
e P is the uniform distribution over H,

e (Q is the uniform distribution on all w € H such that (w,w) > 0, where w € H is the output of your
favorite learning algorithm (e.g. SVM, ERM).

2 Kullback-Leibler divergence

This is our new complexity measure, roughly analogous to Rademacher complexity and VC dimension.

Definition 3. If @ and P are two distributions on the same space, the Kullback-Leibler divergence
between them is:
Q(z)

P(z)

KL(Q| P)=E..qln

Origins of KL (Information Theory)

Alice is sending a binary message to Bob over a digital channel. They each have a copy of a codebook, which
maps symbols in the alphabet {a,...,z} to binary strings.

A wariable length prefiz-free code uses shorter strings to encode more frequent letters. Since no string in
the code is a prefix of any other string, there is never ambiguity about where one string ends and the next
begins. The codebook is chosen to minimize E, .. p [#bits for x], where P is a distribution over {a,...,z}.

Theorem 4. Shannon’s coding theorem: the best thing to do is to use logy % bits to encode x. The
expected number of bits per letter is then:

E.p [#bits] = Exp {logQ P } Z P(z)logy —— P @ 2 H(P)

where H(P) is the entropy of P.

What happens if the codebook was created assuming that the symbols were distributed according to P,
but the real distribution turns out to be @ instead?

. [#bits] = E,o [logz ng)} E.g [log2 2+ 108, Q(l)] _KLQ | P)+ H(Q)

KL(Q || P) is the extra number of bits expected per letter from using P instead of @ to create the codebook.
(Note that in information theory, KL divergence is defined in base 2 rather than base e. The units of
information in base e are nats.)



KL Divergence in PAC-Bayes
(Back to base e.)

Example 4 P is uniform over {hi,...,h}; Q;(h) =1if h = h, and 0 otherwise.

_ Q) ., 1 _
KLQ | P) = EQ]H% =1.In 1k =lInk

Example 5 P is uniform over {hq,...,hz_1}; Q is a distribution such that Q(hy) > 0.

KLQ| P) = EQm% QU 2

(By convention, & = 0o and 0.In3 = 0.)

Example 6 P is the uniform distribution over linear classifiers in the n-dimensional unit ball, and @ is
the uniform distribution over linear classifiers in some n-dimensional unit hemisphere.

a Q(h) _ 2P(h) _
KL(Q| P) = Egln b ~ Eeln gy = In2

Special case: «, 3 € [0,1]

KL(a || B) < KL(Bernoulli(a) || Bernoulli(3)) = aln% +(1—a)ln i :g -0

Theorem 5. KL(Q||P) >0

1
KL(1] O):lln6—|—01n%=oo
0

1
KL | 1):Oln1—|—lln6=oo

1 1
KL(1 | 5):1lni—|—01nf =1In2
2

N O

Theorem 6. (McAllester 2003/1999)
VD,VH,VP (prior on H), with probability > 1 — & over the sampling of S ~ D™,

KL(Q || P) + In ™t
m

VQ (distribution on H) KL(Q;S) || £(Q;D)) <

Corollary 7.

(@:D) < UQ; ) + \/MQ;” (KL@| P)+Int) 2 (KL(@ | P) +1n=2f)

m m



Proof. (of theorem 6)

Define: Z = Ej,.pe™ KLURS)I(RD))

Part I) KL([(Q; S) H g(Q,'D)) < KL(Q || P) +In (%ES[Z])

m
Part 1I) Es[Z] <m+1
D)

Es|Z

By Markov’s inequality, Va, P[Z > a] < SCE ]

Es|Z
Plugging in a = Sé[ ], Pl[Z>a <4
Es[Z]

With probability >1—-0§, Z<a=

= In(Z)<In EES[Z]>

In(Z) = In (EhNPemKL(@(h;S)Hf(h;D))>

P(h .
=In (EhNQEhgem-KL<e(h,S>|e<h,D>>>

Upper bound using Jensen’s inequality 4+ concavity of In:

P(h) KL((h;S)||€(h;D
In(Z 2 Eh~ (ln +1ne77l‘ (£(h;S)[1£(h;D))
(2) o ("am

= “KL(Q | P) + Enwq Im.KL(((h: S) || €(h: D))]
> = ~KL(Q| P) +m.KL(¢(@:S) || €(@: D))

1I) (See lecture 13.)



