CSE522, Winter 2011, Learning Theory	Lecture 12-02/10/2011
PAC-Bayes	
Lecturer: Ofer Dekel	

1 Setting

Assume binary classification: $\mathcal{Y}=\{+1,-1\}$, loss is $0-1$.

Algorithm:

1. Define prior distribution P on \mathcal{H}
2. Get sample $S \sim \mathcal{D}^{m}$
3. Define posterior distribution Q on \mathcal{H}

Note that distributions play two different semantic roles:

- \mathcal{D} is a model of the world;
- P, Q express our beliefs about the correct answer.

Definition 1. The expected risk of Q is: $\ell(Q ; \mathcal{D})=\mathrm{E}_{h \sim \mathcal{D}}(\ell(h ; \mathcal{D}))$

Definition 2. The Gibbs classifier $h_{\text {Gibbs }(Q)}(x) \rightarrow y$ is defined by the following procedure:

1. Sample $h \sim Q$
2. Get x
3. Output $h(x)$
$\mathrm{E}_{(x, y) \sim \mathcal{D}}\left[\ell\left(h_{\operatorname{Gibbs}(Q)} ;(x, y)\right)\right]=\ell(Q ; \mathcal{D})$

Example 1

- $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$,
- $P=$ uniform over \mathcal{H},
- $Q=1$ if $h=h_{E R M}$, and 0 otherwise.

Example 2 Bayesian algorithms:

$$
\text { Applying Bayes rule, } \quad \mathrm{P}(h \mid S)=\frac{\mathrm{P}(S \mid h) \mathrm{P}(h)}{\mathrm{P}(S)}
$$

where

- $\mathrm{P}(h \mid S)$ is the posterior,
- $\mathrm{P}(S \mid h)$ is the likelihood of the data (S) given the hypothesis (h),
- $\mathrm{P}(h)$ is the prior probability of hypothesis h, and
- $\mathrm{P}(S)$ can be thought of as a normalization constant, whose purpose is to make the probabilities add up to 1.

Example 3

- \mathcal{H} is the set of linear classifiers in the n-dimensional unit ball,
- P is the uniform distribution over \mathcal{H},
- Q is the uniform distribution on all $w \in \mathcal{H}$ such that $\langle w, \tilde{w}\rangle \geq 0$, where $\tilde{w} \in \mathcal{H}$ is the output of your favorite learning algorithm (e.g. SVM, ERM).

2 Kullback-Leibler divergence

This is our new complexity measure, roughly analogous to Rademacher complexity and VC dimension.
Definition 3. If Q and P are two distributions on the same space, the Kullback-Leibler divergence between them is:

$$
K L(Q \| P)=\mathrm{E}_{z \sim Q} \ln \frac{Q(z)}{P(z)}
$$

Origins of KL (Information Theory)

Alice is sending a binary message to Bob over a digital channel. They each have a copy of a codebook, which maps symbols in the alphabet $\{a, \ldots, z\}$ to binary strings.

A variable length prefix-free code uses shorter strings to encode more frequent letters. Since no string in the code is a prefix of any other string, there is never ambiguity about where one string ends and the next begins. The codebook is chosen to minimize $\mathrm{E}_{x \sim P}[\# \mathrm{bits}$ for $x]$, where P is a distribution over $\{a, \ldots, z\}$.

Theorem 4. Shannon's coding theorem: the best thing to do is to use $\log _{2} \frac{1}{P(x)}$ bits to encode x. The expected number of bits per letter is then:

$$
\mathrm{E}_{x \sim P}[\# b i t s]=\mathrm{E}_{x \sim P}\left[\log _{2} \frac{1}{P(x)}\right]=\sum_{x=a}^{z} P(x) \log _{2} \frac{1}{P(x)} \triangleq H(P)
$$

where $H(P)$ is the entropy of P.
What happens if the codebook was created assuming that the symbols were distributed according to P, but the real distribution turns out to be Q instead?

$$
\mathrm{E}_{x \sim Q}[\# \mathrm{bits}]=\mathrm{E}_{x \sim Q}\left[\log _{2} \frac{1}{P(x)}\right]=\mathrm{E}_{x \sim Q}\left[\log _{2} \frac{Q(x)}{P(x)}+\log _{2} \frac{1}{Q(x)}\right]=K L(Q \| P)+H(Q)
$$

$K L(Q \| P)$ is the extra number of bits expected per letter from using P instead of Q to create the codebook.
(Note that in information theory, KL divergence is defined in base 2 rather than base e. The units of information in base e are nats.)

KL Divergence in PAC-Bayes

(Back to base e.)
Example $4 P$ is uniform over $\left\{h_{1}, \ldots, h_{k}\right\} ; Q_{\tilde{h}}(h)=1$ if $h=\tilde{h}$, and 0 otherwise.

$$
K L(Q \| P)=\mathrm{E}_{Q} \ln \frac{Q(h)}{P(h)}=1 \cdot \ln \frac{1}{1 / k}=\ln k
$$

Example $5 P$ is uniform over $\left\{h_{1}, \ldots, h_{k-1}\right\} ; Q$ is a distribution such that $Q\left(h_{k}\right)>0$.

$$
K L(Q \| P)=\mathrm{E}_{Q} \ln \frac{Q(h)}{P(h)}=\ldots+Q\left(h_{k}\right) \ln \frac{Q\left(h_{k}\right)}{0}=\infty
$$

(By convention, $\frac{1}{0}=\infty$ and $0 \cdot \ln \frac{0}{0}=0$.)
Example $6 P$ is the uniform distribution over linear classifiers in the n-dimensional unit ball, and Q is the uniform distribution over linear classifiers in some n-dimensional unit hemisphere.

$$
K L(Q \| P)=\mathrm{E}_{Q} \ln \frac{Q(h)}{P(h)}=\mathrm{E}_{Q} \ln \frac{2 P(h)}{P(h)}=\ln 2
$$

Special case: $\alpha, \beta \in[0,1]$

$$
K L(\alpha \| \beta) \leftrightarrow K L(\text { Bernoulli }(\alpha) \| \text { Bernoulli }(\beta))=\alpha \ln \frac{\alpha}{\beta}+(1-\alpha) \ln \frac{1-\alpha}{1-\beta}=0
$$

Theorem 5. $K L(Q \| P) \geq 0$

$$
\begin{aligned}
& K L(1 \| 0)=1 \ln \frac{1}{0}+0 \ln \frac{0}{1}=\infty \\
& K L(0 \| 1)=0 \ln \frac{0}{1}+1 \ln \frac{1}{0}=\infty \\
& K L\left(1 \| \frac{1}{2}\right)=1 \ln \frac{1}{\frac{1}{2}}+0 \ln \frac{0}{\frac{1}{2}}=\ln 2
\end{aligned}
$$

Theorem 6. (McAllester 2003/1999)
$\forall \mathcal{D}, \forall \mathcal{H}, \forall P$ (prior on $\mathcal{H})$, with probability $\geq 1-\delta$ over the sampling of $S \sim \mathcal{D}^{m}$,

$$
\forall Q(\text { distribution on } \mathcal{H}) \quad K L(\ell(Q ; S) \| \ell(Q ; \mathcal{D})) \leq \frac{K L(Q \| P)+\ln \frac{m+1}{\delta}}{m}
$$

Corollary 7.

$$
\ell(Q ; \mathcal{D}) \leq \ell(Q ; S)+\sqrt{\frac{2 \ell(Q ; S) \cdot\left(K L(Q \| P)+\ln \frac{m+1}{\delta}\right)}{m}}+\frac{2\left(K L(Q \| P)+\ln \frac{m+1}{\delta}\right)}{m}
$$

Proof. (of theorem 6)
Define: $Z=\mathrm{E}_{h \sim P} e^{m \cdot K L(\ell(h ; S) \| \ell(h ; \mathcal{D}))}$
Part I) $\quad K L(\ell(Q ; S) \| \ell(Q ; \mathcal{D})) \leq \frac{K L(Q \| P)+\ln \left(\frac{1}{\delta} \mathrm{E}_{S}[Z]\right)}{m}$
Part II) $\quad \mathrm{E}_{S}[Z] \leq m+1$
I)

By Markov's inequality, $\forall a, \quad \mathrm{P}[Z>a] \leq \frac{\mathrm{E}_{S}[Z]}{a}$
Plugging in $a=\frac{\mathrm{E}_{S}[Z]}{\delta}, \quad \mathrm{P}[Z>a] \leq \delta$
With probability $\geq 1-\delta, \quad Z \leq a=\frac{\mathrm{E}_{S}[Z]}{\delta}$
$\Rightarrow \quad \ln (Z) \leq \ln \left(\frac{\mathrm{E}_{S}[Z]}{\delta}\right)$
$\ln (Z)=\ln \left(\mathrm{E}_{h \sim P} e^{m \cdot K L(\ell(h ; S) \| \ell(h ; \mathcal{D}))}\right)$
$=\ln \left(\mathrm{E}_{h \sim Q} \frac{P(h)}{Q(h)} e^{m \cdot K L(\ell(h ; S) \| \ell(h ; \mathcal{D}))}\right)$
Upper bound using Jensen's inequality + concavity of \ln :

$$
\begin{aligned}
\ln (Z) & \geq \mathrm{E}_{h \sim Q}\left(\ln \frac{P(h)}{Q(h)}+\ln e^{m \cdot K L(\ell(h ; S) \| \ell(h ; \mathcal{D}))}\right) \\
& =-K L(Q \| P)+\mathrm{E}_{h \sim Q}[m \cdot K L(\ell(h ; S) \| \ell(h ; \mathcal{D}))] \\
\geq & =-K L(Q \| P)+m \cdot K L(\ell(Q ; S) \| \ell(Q ; \mathcal{D}))
\end{aligned}
$$

II) (See lecture 13.)

