PAC-Bayes Analysis
Lecturer: Ofer Dekel
Scribe: Krishnamurthy Dvijotham

1 Recap of PAC-Bayes Theory

PAC-Bayes theory [McA03] was developed by McAllester initially as an attempt to explain Bayesian learning from a learning theory perspective, but the tools developed later proved to be useful in a much more general context. PAC-Bayes theory gives the tightest known generalization bounds for SVMs, with fairly simple proofs. PAC-Bayesian analysis applies directly to algorithms that output distributions on the hypothesis class, rather than a single best hypothesis. However, it is possible to de-randomize the PAC-Bayes bound to get bounds for algorithms that output deterministic hypothesis.

2 PAC-Bayes Generalization Bound

We will consider the binary classification task with an input space \mathcal{X} and label set $\mathcal{Y}=\{+1,-1\}$. Let \mathcal{D} be the (unknown) true on $\mathcal{X} \times \mathcal{Y}$. Let \mathcal{H} be a hypothesis class of functions $f: \mathcal{X} \mapsto \mathcal{Y}$. Let \mathcal{P} be the space of probability distributions on \mathcal{H}. We consider 0 , 1 -valued loss functions $l: \mathcal{H} \times(\mathcal{X} \times \mathcal{Y}) \mapsto\{0,1\}$.
Definition 1. Let $Q \in \mathcal{P}$. Define:

$$
\begin{gathered}
\text { Risk of } Q l(Q ; \mathcal{D})=E_{(x, y) \sim \mathcal{D}} E_{h \sim Q}[l(h ;(x, y))] \\
\text { Emperical Risk of } Q l(Q ; D)=\frac{1}{|D|} \sum_{(x, y) \in D} E_{h \sim Q}[l(h ;(x, y))]
\end{gathered}
$$

For 0,1 -valued loss functions, $l(Q ; D), l(Q ; \mathcal{D}) \in[0,1]$. Thus, they can be interpreted as the parameter of a Bernoulli random variable. Given, $P, Q \in \mathcal{P}$, we measure the distance between them using the KLdivergence:

$$
\mathrm{KL}(l(Q ; \mathcal{D}) \| l(P ; \mathcal{D}))=l(Q ; \mathcal{D}) \log \left(\frac{l(Q ; \mathcal{D})}{l(P ; \mathcal{D})}\right)+(1-l(Q ; \mathcal{D})) \log \left(\frac{1-l(Q ; \mathcal{D})}{1-l(P ; \mathcal{D})}\right)
$$

Note that the KL-divergence is jointly convex in both its arguments (this follows from the convexity of the function $x \log (x / y)$ over $0 \leq x, y \leq 1)$. We'll use this fact in the proofs later. We analyze algorithms with the following structure:
1: Choose a prior distribution $P \in \mathcal{P}$ before seeing any data.
2: Observe data D and choose posterior $Q \in \mathcal{P} . Q$ can depend on D, P.
3: Output Q
Note: The distribution Q need not be a Bayesian posterior, it can be any distribution. It is allowed to depend on P, D but need not. We will later talk about constructing distribution-dependent priors P where the algorithm is not allowed to use P.
Note: We use probability distributions with two different semantics: P encodes our subjective a-priori belief about what hypotheses are true and \mathcal{D} describes the randomness in the real-world.

Theorem 2. (McAllester) $\forall \mathcal{D}, \forall \mathcal{H} \forall P \in \mathcal{P} \forall \delta>0$, we have with probability at least $1-\delta$ over $S \sim \mathcal{D}^{m}$: $\forall Q \in \mathcal{P}$ (posterior distribution on \mathcal{H} that depends on S),

$$
\mathrm{KL}(l(Q ; S) \| l(Q: \mathcal{D})) \leq \frac{\mathrm{KL}(Q \| P)+\log \left(\frac{m+1}{\delta}\right)}{m}
$$

Proof. Define

$$
Z=\underset{h \sim P}{\mathrm{E}}[\exp (m \mathrm{KL}(l(h ; S) \| l(h ; \mathcal{D})))]
$$

We shall prove this theorem in 2 parts:
1 With probability at least $1-\delta, \operatorname{KL}(l(Q ; S) \| l(Q ; \mathcal{D})) \leq \frac{\mathrm{KL}(Q \| P)+\log \left(\frac{\mathrm{E}_{S}[Z]}{\delta}\right)}{m}$
$2 \mathrm{E}_{S}[Z] \leq m+1$

Proof of Part 1

Using Markov's inequality, we have: $\forall a \operatorname{Pr}[Z>a] \leq \frac{\mathrm{E}_{S}[Z]}{a}$. Plugging in $a=\frac{\mathrm{E}_{S}[Z]}{\delta}$, we get

$$
\operatorname{Pr}\left[Z>\frac{\mathrm{E}_{S}[Z]}{a}\right] \leq \delta
$$

Note that the probability is only over sampling of $h \sim P$. Rewriting this, we have $w \cdot p \geq 1-\delta \quad Z \leq \frac{\mathrm{E}_{S}[Z]}{a}$ which is equivalent to

$$
w \cdot p \geq 1-\delta \quad \log (Z) \leq \log \left(\frac{\mathrm{E}_{S}[Z]}{a}\right)
$$

Thus, w.p $\geq 1-\delta$, we have:

$$
\begin{aligned}
\log (Z) & =\log (\underset{h \sim P}{\mathrm{E}}[\exp (m \mathrm{KL}(l(h ; S) \| l(h ; \mathcal{D})))]) \\
& =\log \left(\underset{h \sim Q}{\mathrm{E}}\left[\frac{P(h)}{Q(h)} \exp (m \mathrm{KL}(l(h ; S) \| l(h ; \mathcal{D})))\right]\right) \quad \text { (Change of Measure) } \\
& \geq \underset{h \sim Q}{\mathrm{E}}\left[\log \left(\frac{P(h)}{Q(h)}\right)+m \mathrm{KL}(l(h ; S) \| l(h ; \mathcal{D}))\right] \quad \text { (Concavity of log) } \\
& =-\operatorname{KL}(Q \| P)+m \underset{h \sim Q}{\mathrm{E}}[\operatorname{KL}(l(h ; S) \| l(h ; \mathcal{D}))] \quad \text { (Definition of KL) } \\
& \geq-\operatorname{KL}(Q \| P)+m \mathrm{KL}(l(Q ; S) \| l(Q ; \mathcal{D})) \quad \text { (Convexity of KL) }
\end{aligned}
$$

Rearranging terms, we get $w \cdot p \geq 1-\delta$,

$$
\mathrm{KL}(l(Q ; S) \| l(Q ; \mathcal{D})) \leq \frac{\mathrm{KL}(Q \| P)+\log (Z)}{m}
$$

Proof of Part 2

Let $l(h ; S)=a_{h}, l(h ; \mathcal{D})=b_{h}$.

$$
\begin{aligned}
\underset{S}{\mathrm{E}}[Z] & =\underset{S}{\mathrm{E}}\left[\underset{h \sim P}{\mathrm{E}}\left[\exp \left(m\left(a_{h} \log \left(a_{h} / b_{h}\right)+\left(1-a_{h}\right) \log \left(\left(1-a_{h}\right) /\left(1-b_{h}\right)\right)\right)\right)\right]\right] \\
& =\underset{S}{\mathrm{E}}\left[\underset{h \sim P}{\mathrm{E}}\left[\left(\frac{a_{h}}{b_{h}}\right)^{m a_{h}}\left(\frac{1-a_{h}}{1-b_{h}}\right)^{m\left(1-a_{h}\right)}\right]\right]
\end{aligned}
$$

a_{h} can take $m+1$ values: $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}$ and has a binomial distibution with parameter b_{h}. Thus,

$$
\begin{aligned}
& \underset{S}{\mathrm{E}}\left[\left(\frac{a_{h}}{b_{h}}\right)^{m a_{h}}\left(\frac{1-a_{h}}{1-b_{h}}\right)^{m\left(1-a_{h}\right)}\right] \\
& =\sum_{k=0}^{m}\binom{m}{k} b_{h}^{k}\left(1-b_{h}\right)^{m-k}\left(\frac{k / m}{b_{h}}\right)^{k}\left(\frac{1-k / m}{\left(1-b_{h}\right)}\right)^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k}\left(\frac{k}{m}\right)^{k}\left(1-\frac{k}{m}\right)^{m-k}
\end{aligned}
$$

We know that $\binom{m}{k}\left(\frac{k}{m}\right)^{k}\left(1-\frac{k}{m}\right)^{m-k}$ is the probability that a binomial random variable with parameter $\frac{k}{m}, k, m$ is equal to k, and hence is smaller than 1 . Thus, the sum over k is smaller than $m+1$. Thus $\mathrm{E}_{S}[Z] \leq m+1$. One can actually show a tighter bound: $\mathrm{E}_{S}[Z] \in[\sqrt{m}, \sqrt{2 m}]$ using a more careful analysis.

We now prove some corollaries to relate the KL-divergence bound to the kinds of additive bounds we have seen before.

Lemma 3. If $a, b \in[0,1]$ and $\operatorname{KL}(a \| b) \leq x$, then

$$
b \leq a+\sqrt{\frac{x}{2}}, b \leq a+2 x+\sqrt{2 a x}
$$

Proof. Proof of First Inequality
Consider the function $f(a)=\operatorname{KL}(a \| b)-2(a-b)^{2}$.

$$
\begin{gathered}
f^{\prime}(a)=\log \left(\frac{a}{1-a}\right)-\log \left(\frac{b}{1-b}\right)-4(a-b) \\
f^{\prime \prime}(a)=\frac{1}{a(1-a)}-4
\end{gathered}
$$

$a(1-a)$ achieves its maximum of $1 / 4$ at $a=1 / 2$ and hence $f^{\prime \prime}(a) \geq 0 \forall a \in[0,1] . f^{\prime}(a)=0$ at $a=b$ and $f^{\prime \prime} \geq 0$, therefor, b is the minimum of $f(a)$ and $f(b)=0$. Hence $f(a) \geq 0 \forall a \in[0,1]$. Hence $x \geq \mathrm{KL}(a \| b) \geq$ $2(a-b)^{2} . G(b)=2 b^{2}-4 a b+2 a^{2}-x \leq 0 . G$ is a convex quadratic in b and hence if $G(b) \leq 0$, then b must lie between the roots of G and hence be smaller than the larger root of G. Thus,

$$
b \leq a+\sqrt{a^{2}-\frac{2 a^{2}-x}{2}}=a+\sqrt{\frac{x}{2}}
$$

Proof of Second Inequality

If $a \geq b$ then the inequality is obviously true. Suppose that $b>a$. Then consider the function $f(a)=$ $\mathrm{KL}(a \| b)-\frac{(a-b)^{2}}{2 b}$.

$$
\begin{gathered}
f^{\prime}(a)=\log \left(\frac{a}{1-a}\right)-\log \left(\frac{b}{1-b}\right)-\frac{a-b}{b} \\
f^{\prime \prime}(a)=\frac{1}{a}+\frac{1}{1-a}-\frac{1}{b}
\end{gathered}
$$

Since $b>a, 1 / a>1 / b$ and hence $f^{\prime \prime}(a)>0 . f^{\prime}(b)=0, f(b)=0$ and hence $f(a)>0 \forall a \in(a, b)$. Thus, if $b>a, x \geq \operatorname{KL}(a \| b) \geq \frac{(a-b)^{2}}{2 b}$. Thus, we get

$$
G(b)=b^{2}-(2 a+2 x) b+a^{2} \leq 0
$$

Thus, as before, b is smaller than the larger root of G, ie,

$$
a+x+\sqrt{(a+x)^{2}-a^{2}}=a+x+\sqrt{x^{2}+2 a x} \leq a+x+x+\sqrt{2 a x}=a+2 x+\sqrt{2 a x}
$$

where we used the sub-additivity of the square root function.

Corollary 4. $\forall \mathcal{D}, \forall \mathcal{H} \forall P \in \mathcal{P} \forall \delta>0$, we have the following bounds with probability at least $1-\delta$ over $S \sim \mathcal{D}^{m}$:

$$
\forall Q \in \mathcal{P} \quad l(Q ; \mathcal{D}) \leq l(Q ; S)+\sqrt{\frac{\mathrm{KL}(Q \| P)+\log \left(\frac{m+1}{\delta}\right)}{m}}
$$

$$
\forall Q \in \mathcal{P} \quad l(Q ; \mathcal{D}) \leq l(Q ; S)+2\left(\frac{\mathrm{KL}(Q \| P)+\log \left(\frac{m+1}{\delta}\right)}{m}\right)+\sqrt{2 l(Q ; S)\left(\frac{\mathrm{KL}(Q \| P)+\log \left(\frac{m+1}{\delta}\right)}{m}\right)}
$$

Proof. These follow directly by plugging the KL bounds from lemma 3 into the PAC Bayes bound from theorem 2.

References

[McA03] D. McAllester. Simplified PAC-Bayesian Margin Bounds. In Learning theory and Kernel machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003: proceedings, page 203. Springer Verlag, 2003.

