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1 Recap of PAC-Bayes Theory

PAC-Bayes theory [McA03] was developed by McAllester initially as an attempt to explain Bayesian learning
from a learning theory perspective, but the tools developed later proved to be useful in a much more general
context. PAC-Bayes theory gives the tightest known generalization bounds for SVMs, with fairly simple
proofs. PAC-Bayesian analysis applies directly to algorithms that output distributions on the hypothesis
class, rather than a single best hypothesis. However, it is possible to de-randomize the PAC-Bayes bound to
get bounds for algorithms that output deterministic hypothesis.

2 PAC-Bayes Generalization Bound

We will consider the binary classification task with an input space X and label set Y = {+1,−1}. Let D be
the (unknown) true on X × Y. Let H be a hypothesis class of functions f : X 7→ Y. Let P be the space of
probability distributions on H. We consider 0, 1-valued loss functions l : H× (X × Y) 7→ {0, 1}.
Definition 1. Let Q ∈ P. Define:

Risk of Q l(Q;D) = E(x,y)∼DEh∼Q [l(h; (x, y))]

Emperical Risk of Q l(Q;D) =
1

|D|
∑

(x,y)∈D

Eh∼Q [l(h; (x, y))]

For 0, 1-valued loss functions, l(Q;D), l(Q;D) ∈ [0, 1]. Thus, they can be interpreted as the parameter
of a Bernoulli random variable. Given, P,Q ∈ P, we measure the distance between them using the KL-
divergence:

KL (l(Q;D) ‖ l(P ;D)) = l(Q;D) log

(
l(Q;D)

l(P ;D)

)
+ (1− l(Q;D)) log

(
1− l(Q;D)

1− l(P ;D)

)
Note that the KL-divergence is jointly convex in both its arguments (this follows from the convexity of the
function x log(x/y) over 0 ≤ x, y ≤ 1). We’ll use this fact in the proofs later. We analyze algorithms with
the following structure:

1: Choose a prior distribution P ∈ P before seeing any data.
2: Observe data D and choose posterior Q ∈ P. Q can depend on D,P .
3: Output Q

Note: The distribution Q need not be a Bayesian posterior, it can be any distribution. It is allowed to
depend on P,D but need not. We will later talk about constructing distribution-dependent priors P where
the algorithm is not allowed to use P .
Note: We use probability distributions with two different semantics: P encodes our subjective a-priori
belief about what hypotheses are true and D describes the randomness in the real-world.

Theorem 2. (McAllester) ∀D,∀H∀P ∈ P∀δ > 0, we have with probability at least 1− δ over S ∼ Dm:
∀Q ∈ P (posterior distribution on H that depends on S),

KL (l(Q;S) ‖ l(Q : D)) ≤
KL (Q ‖ P ) + log

(
m+1
δ

)
m

1



Proof. Define
Z = E

h∼P
[exp (mKL (l(h;S) ‖ l(h;D)))]

We shall prove this theorem in 2 parts:

1 With probability at least 1− δ, KL (l(Q;S) ‖ l(Q;D)) ≤
KL(Q‖P )+log

(
ES [Z]

δ

)
m

2 ES [Z] ≤ m+ 1

Proof of Part 1
Using Markov’s inequality, we have: ∀aPr [Z > a] ≤ ES [Z]

a . Plugging in a = ES [Z]
δ , we get

Pr

[
Z >

ES [Z]

a

]
≤ δ

Note that the probability is only over sampling of h ∼ P . Rewriting this, we have w.p ≥ 1− δ Z ≤ ES [Z]
a

which is equivalent to

w.p ≥ 1− δ log(Z) ≤ log

(
ES [Z]

a

)
Thus, w.p ≥ 1− δ, we have:

log(Z) = log

(
E
h∼P

[exp (mKL (l(h;S) ‖ l(h;D)))]

)
= log

(
E
h∼Q

[
P (h)

Q(h)
exp (mKL (l(h;S) ‖ l(h;D)))

])
(Change of Measure)

≥ E
h∼Q

[
log

(
P (h)

Q(h)

)
+mKL (l(h;S) ‖ l(h;D))

]
(Concavity of log)

= −KL (Q ‖ P ) +m E
h∼Q

[KL (l(h;S) ‖ l(h;D))] (Definition of KL)

≥ −KL (Q ‖ P ) +mKL (l(Q;S) ‖ l(Q;D)) (Convexity of KL)

Rearranging terms, we get w.p ≥ 1− δ,

KL (l(Q;S) ‖ l(Q;D)) ≤ KL (Q ‖ P ) + log(Z)

m

Proof of Part 2
Let l(h;S) = ah, l(h;D) = bh.

E
S

[Z] = E
S

[
E
h∼P

[exp (m(ah log(ah/bh) + (1− ah) log((1− ah)/(1− bh))))]

]
= E

S

[
E
h∼P

[(
ah
bh

)mah(1− ah
1− bh

)m(1−ah)
]]

ah can take m+ 1 values:
{

0, 1
m ,

2
m , . . . , 1

}
and has a binomial distibution with parameter bh. Thus,

E
S

[(
ah
bh

)mah(1− ah
1− bh

)m(1−ah)
]

=

m∑
k=0

(
m

k

)
bkh(1− bh)

m−k
(
k/m

bh

)k(
1− k/m
(1− bh)

)m−k
=

m∑
k=0

(
m

k

)(
k

m

)k (
1− k

m

)m−k

2



We know that
(
m
k

) (
k
m

)k (
1− k

m

)m−k
is the probability that a binomial random variable with parameter

k
m , k,m is equal to k, and hence is smaller than 1. Thus, the sum over k is smaller than m + 1. Thus

ES [Z] ≤ m + 1. One can actually show a tighter bound: ES [Z] ∈ [
√
m,
√

2m] using a more careful
analysis.

We now prove some corollaries to relate the KL-divergence bound to the kinds of additive bounds we have
seen before.

Lemma 3. If a, b ∈ [0, 1] and KL (a ‖ b) ≤ x, then

b ≤ a+

√
x

2
, b ≤ a+ 2x+

√
2ax

Proof. Proof of First Inequality
Consider the function f(a) = KL (a ‖ b)− 2(a− b)2.

f ′(a) = log

(
a

1− a

)
− log

(
b

1− b

)
− 4(a− b)

f ′′(a) =
1

a(1− a)
− 4

a(1 − a) achieves its maximum of 1/4 at a = 1/2 and hence f ′′(a) ≥ 0 ∀a ∈ [0, 1]. f ′(a) = 0 at a = b and
f ′′ ≥ 0, therefor, b is the minimum of f(a) and f(b) = 0. Hence f(a) ≥ 0∀a ∈ [0, 1]. Hence x ≥ KL (a ‖ b) ≥
2(a− b)2. G(b) = 2b2 − 4ab+ 2a2 − x ≤ 0. G is a convex quadratic in b and hence if G(b) ≤ 0, then b must
lie between the roots of G and hence be smaller than the larger root of G. Thus,

b ≤ a+

√
a2 − 2a2 − x

2
= a+

√
x

2

Proof of Second Inequality
If a ≥ b then the inequality is obviously true. Suppose that b > a. Then consider the function f(a) =

KL (a ‖ b)− (a−b)2
2b .

f ′(a) = log

(
a

1− a

)
− log

(
b

1− b

)
− a− b

b

f ′′(a) =
1

a
+

1

1− a
− 1

b

Since b > a, 1/a > 1/b and hence f ′′(a) > 0. f ′(b) = 0, f(b) = 0 and hence f(a) > 0∀a ∈ (a, b). Thus, if

b > a, x ≥ KL (a ‖ b) ≥ (a−b)2
2b . Thus, we get

G(b) = b2 − (2a+ 2x)b+ a2 ≤ 0

Thus, as before, b is smaller than the larger root of G, ie,

a+ x+
√

(a+ x)2 − a2 = a+ x+
√
x2 + 2ax ≤ a+ x+ x+

√
2ax = a+ 2x+

√
2ax

where we used the sub-additivity of the square root function.

Corollary 4. ∀D,∀H∀P ∈ P∀δ > 0, we have the following bounds with probability at least 1−δ over S ∼ Dm:

∀Q ∈ P l(Q;D) ≤ l(Q;S) +

√
KL (Q ‖ P ) + log

(
m+1
δ

)
m
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∀Q ∈ P l(Q;D) ≤ l(Q;S) + 2

(
KL (Q ‖ P ) + log

(
m+1
δ

)
m

)
+

√√√√2l(Q;S)

(
KL (Q ‖ P ) + log

(
m+1
δ

)
m

)

Proof. These follow directly by plugging the KL bounds from lemma 3 into the PAC Bayes bound from
theorem 2.
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