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1 Review of PAC Bayes Theorem

Theorem 1. ∀ distributions D, ∀ hypothesis H, ∀ priors P on H, ∀δ > 0 w.p. ≥ 1 − δ, it holds for all
posteriors Q on H that

KL(l(Q;S)||l(Q||D)) ≤
KL(Q||P) + log m+1

δ

m
(1)

Lemma 2. For any scalars, α, β let it hold that KL(α||β) ≤ x. Then, |α − β| ≤
√

x/2. Also if β > α,
β − α ≤

√
2xα + 2x.

2 Derandomizing PAC Bayes bounds

Notation
X = [−1, 1]n ⊂ Rn = {w ∈ Rn : ‖w‖∞ ≤ 1}. H is a linear hypothesis class, so that any element, hw

in H applied to x has the form, hw(x) = 〈w, x〉 with w ∈ X . For any feature vector x, sgn(hw(x)) is the
binary prediction and |hw(x)| is the confidence. Denote by lγ the γ-margin 0-1 loss. That is, lγ(hw; (x, y)) =
1{yhw(x)≤γ}. Note that l0 is the standard error-indicator loss. For a uniform distribution, P let vol(P) denote
the volume of the sample space having non-zero probablity mass.

Theorem 3. Let A be any algorithm that takes in a sample S ∼ Dm and outputs a hypothesis hw̃ with
w̃ ∈ [−1, 1]n. Let P be uniformly distributed on [−1,+1]n and let Q be uniformly distributed on (w̃ ±

[− γ
2n , γ

2n ]n) ∩ P. Then, l0(w̃;D) ≤ lγ(w̃;S) +
√

n log( 4n
γ )+log( m+1

δ )

2m .

Note that the algorithm A needn’t know anything about the prior P or posterior, Q. These two quantities
are chosen in the theorem to give good de-randomized PAC-Bayes bounds. The proof of the theorem follows
from two lemmas given below.

Lemma 4. The following inequalities hold true:

l0(w̃;D) ≤ l γ
2
(Q;D)

l γ
2
(Q;S) ≤ lγ(w̃;S)

Proof. ∀ŵ ∈ Q,∀x ∈ X we have,

|〈w̃, x〉 − 〈ŵ, x〉| = |
n∑

j=1

xj(w̃j − ŵj)|

≤
n∑

j=1

|xj(w̃j − ŵj)|

≤
n∑

j=1

|w̃j − ŵj |

≤
n∑

j=1

γ

2n

= γ
2

(2)

1



Note that lγ(w̃; (x, y)) = 0 ⇒ l γ
2
(ŵ; (x, y)) = 0. Indeed, let y = 1 then 〈w̃, x〉 ≥ γ. Hence from (2),

〈ŵ, x〉 ≥ 〈w̃, x〉 − γ
2 ≥ γ

2 . Similarly, l γ
2
(ŵ; (x, y)) = 0 ⇒ l0(w̃; (x, y)) = 0. The previous two implications

immediately imply that,

l0(w̃;D) ≤ l γ
2
(ŵ;D) ≤ lγ(w̃;D)

l0(w̃;S) ≤ l γ
2
(ŵ;S) ≤ lγ(w̃;S) (3)

Taking expectation of above inequalities over ŵ ∼ Q, the lemma follows.

Lemma 5. KL(Q||P ) ≤ n log(4n
γ ).

Proof. Note from definition that vol(P)= 2n, vol(Q) ≥ ( γ
2n )n. Let q(h), p(h) be the p.d.f of Q,P respectively.

KL(Q||P) =
∫

h∈X q(h) log q(h)
p(h) = log vol(P)

vol(Q)
≤ n log 4n

γ .

Proof of Theorem 3. Note that (1) holds for l = l γ
2
. Along with Lemma 2, this implies that

l γ
2
(Q;D) ≤ l γ

2
(Q;S) +

√
KL(Q||P)+log m+1

δ

2m
(4)

Using (4) along with Lemma 4 and Lemma 5 we have that,

l0(w̃;D) ≤ l γ
2
(Q;D)

≤ l γ
2
(Q;S) +

√
KL(Q||P)+log m+1

δ

2m

≤ lγ(w̃;S) +
√

n log 4n
γ +log m+1

δ

2m

(5)

3 Distribution dependent priors

In this section, we give two examples of distribution dependent priors on the hypothesis space that give good
PAC-Bayes bounds.

3.1 Genereic prior

Given a sample S ∼ Dm and an algorithm A(S), the posterior Q is a function of A(S). The bound on the
right hand side of (1) can be minimized by choosing P appropriately. Set,

P∗ = argmin
P∈PH

ES∈Dm [KL(Q||P)] (6)

The following lemma shows that P∗ would be dependent on the distribution D but not on the sample S.

Lemma 6. P∗ = ES∼Dm [Q].

Proof. Let q(h) and p(h) be the p.d.f of Q and P respectively. Note that minimizing ES∈Dm [KL(Q||P)] =∫
S∼Dm

∫
H

q(h) log
q(h)
p(h)

dhdS with respect to P is equivalent to minimizing
∫

S∼Dm

∫
H

q(h) log
1

p(h)
dhdS with

respect to P. Note that ES [q(h)] = q̄(h) =
∫

S∼Dm

q(h)dS. Hence,∫
S∼Dm

∫
H

q(h) log
1

p(h)
dhdS =

∫
H

q̄(h) log
1

p(h)
dh

=
∫
H

q̄(h) log
1

q̄(h)
dh−

∫
H

q̄(h) log
p(h)
q̄(h)

dh

≥
∫
H

q̄(h) log
1

q̄(h)
dh

(7)
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where the last inequality follows from Jensen’s inequality. Since the equality is achieved for p(h) = q̄(h) it
follows that P∗ = ES∼Dm [Q].

Hence we have the following bound,

KL(l(Q;S)||l(Q;D)) ≤ KL(Q||ES [Q])+
log(m+1)

δ

m
(8)

3.2 Distribution dependent prior for soft ERM

Consider the posterior coming out of the soft Empirical Risk Minimization:

q(h) =
1

ZQ
e−γl(h;S), (9)

where γ > 0 and ZQ is a normalization constant so that q is a p.d.f. Define the distribution dependent prior,

p(h) =
1

ZP
e−γl(h;D) (10)

Note that although p(h) is not the expectation of q(h) over S ∼ Dm, the exponent l(h;D) = ES∼Dm l(h;S).

Lemma 7.

KL(Q||P) ≤ γ(l(Q;D)− l(Q;S))− γ(l(P;D)− l(P;S)) (11)

Proof.

KL(Q||P) = EQ log q(h)
p(h)

= EQ[log e−γl(h;S)

e−γl(h;D) ]− log ZQ
ZP

= γ(l(Q;D)− l(Q;S))− log ZQ
ZP

(12)

Note by definition that,

log ZQ
ZP

= log
∫
H

1
ZP

e−γl(h;S)dh

= log
∫
H

p(h)eγl(h;D)e−γl(h;S)dh

= log EP [eγl(h;D)e−γl(h;S)]
≥ EP [γ(l(h;D)− l(h;S))]
= γ(l(P;D)− l(P;S))

(13)

where the above inequality follows from Jensen’s inequality. Combining (12) and (13), the lemma follows.

Theorem 8. For the posterior Q with p.d.f as defined in (9), it holds that,

KL(l(Q;S)||l(Q;D)) ≤
√

2γ

m3/2

√
log

(
m + 1

δ

)
+

γ2

2m2
+

log(m+1
δ )

m
(14)
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Proof. The PAC-Bayes bounds in (1) along with Lemma 2 gives,

l(Q;D)− l(Q;S) ≤

√
KL(Q||P) + log m+1

δ

2m
(15)

|l(P;D)− l(P;S)| ≤

√
KL(P||P) + log m+1

δ

2m
(16)

Combining Lemma 7 and (16) we have,

KL(Q||P) ≤ γ(l(Q;D)− l(Q;S))− γ(l(P;D)− l(P;S))

≤ γ

√
KL(Q||P)+log m+1

δ

2m + γ

√
log m+1

δ

2m

(17)

Let x = KL(Q||P) and L = log m+1
δ . Then, x − γ

√
L

2m ≤ γ
√

x+L
2m . Assume x ≥ γ

√
L

2m . Squaring the

previous inequality on both sides, we get that x ≤ 2γ
√

L
2m + γ2

2m . Plugging this back into (1) the theorem
follows.
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