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Derandomizing PAC-Bayes bounds and distribution dependent priors
Lecturer: Ofer Dekel Scribe: Karthik Mohan

1 Review of PAC Bayes Theorem

Theorem 1. V distributions D, ¥ hypothesis H, ¥ priors P on H, Y6 > 0 w.p. > 1 — 4, it holds for all

posteriors @ on H that

KL(Q||P) + log ™+ )
m

Lemma 2. For any scalars, a, 8 let it hold that KL(«||8) < x. Then, |a — 8] < y/z/2. Also if § > «,
0 —a<V2ra+ 2x.

KLU(Q; 9)[I(QlP)) <

2 Derandomizing PAC Bayes bounds

Notation

X =[-L1"Cc R" ={w € R" : |w|leoc < 1}. H is a linear hypothesis class, so that any element, h,,
in H applied to = has the form, h, () = (w,z) with w € X. For any feature vector x, sgn(h,(z)) is the
binary prediction and |k, (x)]| is the confidence. Denote by I, the y-margin 0-1 loss. That is, I (hy; (z,y)) =
1{yh, (x)<+}- Note that [y is the standard error-indicator loss. For a uniform distribution, P let vol(P) denote
the volume of the sample space having non-zero probablity mass.

Theorem 3. Let A be any algorithm that takes in a sample S ~ D™ and outputs a hypothesis hg with
w € [=1,1)". Let P be uniformly distributed on [—1,+1]" and let Q be uniformly distributed on (W +

nlog( 42 og(mtL
[~ 2, 2]") A\ P. Then, lo(u?;D)SlW(zD;S)ﬁ—\/ loa(5 ) Hoa(F57)

T 2n02n 2m

Note that the algorithm A needn’t know anything about the prior P or posterior, Q. These two quantities
are chosen in the theorem to give good de-randomized PAC-Bayes bounds. The proof of the theorem follows
from two lemmas given below.

Lemma 4. The following inequalities hold true:
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Note that I (@; (z,))
(,z) > (w,z) — % =
immediately imply that

l3(w;(z,y)) = 0. Indeed, let y = 1 then (w,z) > 7. Hence from (2),
)

=0=
% Si mllarly, l%(u}; (z,9)) = 0 = lp(w; (z,y)) = 0. The previous two implications

lo(w;D) < lz(w;D) < Iy(w;D) 5
(@:5) < 13(:8) < I(@:8) )
Taking expectation of above inequalities over w ~ Q, the lemma follows. O

Lemma 5. KL(Q||P) < nlog(%").

Proof. Note from definition that vol(P)= 2", vol(Q) > (5%)". Let q(h),p(h) be the p.d.f of Q, P respectively.

1
KL(QIIP) = [,y alh) log £33 = log Y2} < pilog 12, o

Proof of Theorem 3. Note that (1) holds for [ = [3. Along with Lemma 2, this implies that

13(QD) < 13(Q;8) +/ KEP oz 25 "
Using (4) along with Lemma 4 and Lemma 5 we have that,

lo(w; D) < (Q D)

o m+1
< 15(0:8)+ \/KL QHP +1 o (5)
4n m+1
< (@8 + TR
O

3 Distribution dependent priors

In this section, we give two examples of distribution dependent priors on the hypothesis space that give good
PAC-Bayes bounds.

3.1 Genereic prior

Given a sample S ~ D™ and an algorithm .A(S), the posterior Q is a function of A(S). The bound on the
right hand side of (1) can be minimized by choosing P appropriately. Set,

P* = argmin Egepm [K L(Q||P)] (6)
PePr

The following lemma shows that P* would be dependent on the distribution D but not on the sample S.
Lemma 6. P* = Eg..pn[Q].
Proof. Let q(h) and p(h) be the p.d.f of Q and P respectively. Note that minimizing Egecpm [K L(Q||P)] =

/ q(h)log —= a(h) ——=dhdS with respect to P is equivalent to minimizing / / q(h)log thdS with
S~Dm™ JH p(h) S~Dm JH p(h)
respect to P. Note that Eglg(h)] = g(h) = q(h)dS. Hence,
SNDTVL
/ / log dhdS = / q(h)log —dh
S~Dm H ( o(h)
= | athyton sdn— / h)log —hdh (M)
> q(h log dh
/H ) 108 75



where the last inequality follows from Jensen’s inequality. Since the equality is achieved for p(h) = q(h) it

follows that P* = Eg.pm[Q].
Hence we have the following bound,

KLU(Q;9)|(Q D)) < ‘MU ZE

m

3.2 Distribution dependent prior for soft ERM

Consider the posterior coming out of the soft Empirical Risk Minimization:

g(h) = ———0S),

9)

where v > 0 and Zg is a normalization constant so that ¢ is a p.d.f. Define the distribution dependent prior,

1
h) = — VWD)
p(h) 75

(10)

Note that although p(h) is not the expectation of g(h) over S ~ D™, the exponent I(h; D) = Eg.pmi(h;S).

Lemma 7.

KLQ|P) < ~(U(&D)—1(S)) —~((P;D)—U(P;S))

Proof.

Eglog {fi)
e~ VL(h;S)
Eg[log W] — log %

= (D) - 1(Q;5)) —log 22

KL(Q||P)

Note by definition that,

T
log 22 = log/HZPe WRS) g,

= log p(h)evl(h;D)e*vl(h;S)dh
log o ¢ 7L(hD) g =71(1:5))

Ep[y(I(h; D) —1(h; S))]
Y(U(P; D) = U(P; 9))

vl

where the above inequality follows from Jensen’s inequality. Combining (12) and (13), the lemma follows.

Theorem 8. For the posterior Q with p.d.f as defined in (9), it holds that,

KL((Q; 9)I[(Q D)) <

2 1 2 log (4L
V2y log(m+)+7 +0g(5)

m3/2 ) 2m?2 m

(11)

(12)

(13)

O

(14)



Proof. The PAC-Bayes bounds in (1) along with Lemma 2 gives,

KL(Q||P) + log ™+
l(Q;D)—l(Q;S)S\/ () + g %5 (15)

m+1
I(P;D) — I(P; )| < \/KL(P”P;JI% : (16)

Combining Lemma 7 and (16) we have,

KL(Q|P) < ~(U(2D)—-U;5)) —vU(P;D) —U(P;S)) an

m+1 m+1

< KL(Q||732)7:10gT +,y\/log2m5

Let + = KL(Q||P) and L = log mT'H. Then, x — ~ ﬁ < 'y,/%. Assume x > 'y\/%. Squaring the

previous inequality on both sides, we get that = < 2+ ﬁ + % Plugging this back into (1) the theorem
follows. O



