CSE522, Winter 2011, Learning Theory	Lecture 15 - 02/22/2011
Doob Martingales and online learning	
Lecturer: Ofer Dekel	Scribe: Karthik Mohan

1 Background on Expectation

Conditional probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$. **Expectation**: Let $Z : \Omega \to \mathbb{R}$ be a random variable. $E[Z] = \sum_{z \in \Omega} P(Z = z)z$. **Conditional Expectation 1**: $E[Z|Y = y] = \sum_{z} P(Z = z|Y = y)z$. This expectation is a function of y and hence a number.

Conditional Expectation 2: $E[Z|Y] = \sum_{z} P(Z = z|Y)z$. This expectation is a function of Y and hence a random variable.

Example 1

$$X = \begin{cases} 1 & \text{w.p. } 1/2 \\ 0 & \text{w.p. } 1/2 \end{cases} \quad Y = \begin{cases} 2 & \text{w.p. } 1/2 \\ 0 & \text{w.p. } 1/2 \end{cases}$$
(1)

Let Z = X + Y. Note that, $\mathsf{E}[Z] = \frac{1}{4}[0 + 1 + 2 + 3] = 3/2$.

$$\mathsf{E}[Z|X] = \begin{cases} \mathsf{E}[Z|X=0] & \text{w.p.} & \mathsf{P}(X=0) = 1/2\\ \mathsf{E}[Z|X=1] & \text{w.p.} & \mathsf{P}(X=1) = 1/2 \end{cases}$$
(2)

Note that E[Z|X] = E[Y] + X = 1 + X.

Lemma 1 (Law of Total Expectation). $\forall X, Y \in [X] = \mathsf{E}[\mathsf{E}[X|Y]].$

Proof.

$$E[X] = \sum_{x} P(X = x)x$$

$$= \sum_{x} (\sum_{y} P(X = x, Y = y))x$$

$$= \sum_{x} (\sum_{y} P(X = x|Y = y)P(Y = y))x$$

$$= \sum_{y} P(Y = y) \sum_{x} P(X = x|Y = y)x$$

$$= \sum_{y} P(Y = y)E[X|Y = y]$$

$$= E[E[X|Y]]$$
(3)

where the second equality follows from total probability.

Example 2 Let U_1, U_2, \ldots, U_m be random variables. Let $X = f(U_1, U_2, \ldots, U_m)$ and $Z = E[X|U_1, U_2, \ldots, U_k]$. Then, $\mathsf{E}[X] = \mathsf{E}_{U_1, U_2, \ldots, U_k}[\mathsf{E}_{U_{k+1}, \ldots, U_m}[X]] = \mathsf{E}_{U_1, \ldots, U_k}[\mathsf{E}[X|U_1, U_2, \ldots, U_k]] = \mathsf{E}[Z]$. The previous expression also follows from the law of total expectation.

2 Background on Martingales

Definition 2. A sequence of random variables $(W_i)_{i=0}^m$ is a martingale w.r.t another sequence of random variables $(U_i)_{i=1}^m$ if

$$\begin{aligned}
\mathsf{E}[|W_i|] &< \infty \\
\forall i \quad \mathsf{E}[W_{i+1}|U_1, U_2, \dots, U_i] &= W_i
\end{aligned} \tag{4}$$

Example 3 Consider a random walk on real line:

Let W_i denote the position after *i* steps with the initial position $W_0 = 0$. Let the random walk be described by:

$$W_{i+1} = \begin{cases} W_i + 1 & \text{w.p. } 1/2 \\ W_i - 1 & \text{w.p. } 1/2 \end{cases}$$
(5)

Let,

$$U_i = \begin{cases} 1 & \text{w.p. } 1/2 \\ -1 & \text{w.p. } 1/2 \end{cases}$$
(6)

Note that, $W_{i+1} = W_i + U_{i+1}$, $i = 0, \dots, m-1$. Also, $(W_i)_{i=0}^m$ is a martingale w.r.t $(U_i)_{i=1}^m$ since $\mathsf{E}[|W_i|] < \infty$ and $\mathsf{E}[W_{i+1}|U_1, U_2, \dots, U_i] = \mathsf{E}[\sum_{j=1}^{i+1} U_j | U_1, U_2, \dots, U_i] = \sum_{j=1}^{i} U_i + \mathsf{E}[U_{i+1}] = W_i$.

3 Doob Martingale

Definition 3. Let $(U_i)_{i=1}^m$ be a sequence of random variables and $f(U_1, U_2, \ldots, U_m)$ be a function such that $\mathsf{E}[|f(U_1, U_2, \ldots, U_m)|] < \infty$. The doob martingale is defined as $(W_i)_{i=0}^m$ where, $W_i = \mathsf{E}[f(U_1, \ldots, U_m)|U_1, U_2, \ldots, U_i]$ for $1 \le i \le m$ and $W_0 = \mathsf{E}[f(U_1, \ldots, U_m)]$.

Note that the randomness is incrementally revealed in W_i as *i* goes from 0 (W_0 is a scalar) to *m* (W_m is a function of U_1, U_2, \ldots, U_m).

Theorem 4. A doob martingale is a martingale.

 $\begin{array}{l} \textit{Proof. For a doob martingale, } \mathsf{E}[|W_i|] = \mathsf{E}_{U_1, \dots, U_i}[|\mathsf{E}_{U_{i+1}, \dots, U_m}[f(U_1, \dots, U_m)]|] \leq \mathsf{E}[|f(U_1, \dots, U_m)|] < \infty. \\ \textit{Also, } \mathsf{E}[W_{i+1}|U_1, \dots, U_i] = \mathsf{E}[\mathsf{E}[f(U_1, \dots, U_m)|U_1, \dots, U_{i+1}]|U_1, \dots, U_i] = \mathsf{E}_{U_{i+1}, \dots, U_m}[\mathsf{E}_{U_{i+2}, \dots, U_m}[f(U_1, \dots, U_m)]] = \mathsf{E}_{U_{i+1}, \dots, U_m}[f(U_1, \dots, U_m)] = \mathsf{E}[f(U_1, \dots, U_m)|U_1, \dots, U_i] = W_i. \end{array}$

Definition 5. We say that a martingale $(W_i)_{i=0}^m$ has $\frac{c}{m}$ -bounded differences $(\frac{c}{m}$ -Lipschitz) if $|W_{i+1} - W_i| \le \frac{c}{m}$.

Fact 6. Hoeffding-Azuma: For Doob Martingales with $\frac{c}{m}$ -bounded differences, $\mathsf{P}(W_m - W_0 < \epsilon) \le e^{\frac{-2m\epsilon^2}{c^2}}$. Thus, for all $\delta > 0$ w.p. $\ge 1 - \delta$ over the random draws U_1, \ldots, U_m ,

$$W_m \le W_0 + c \sqrt{\frac{\log \frac{1}{\delta}}{2m}} \tag{7}$$

For general martingales, $\mathsf{P}(W_m - W_0 > \epsilon) \le e^{-\frac{m\epsilon^2}{2c^2}}$.

4 Online Learning

Assume the samples, $S \in \mathcal{D}^m$. Let $(\mathcal{X}, \mathcal{Y})$ denote the set of all possible feature vectors and labels respectively. The general form of online learning is as follows:

- 1. Start with $h_0 \in \mathcal{H}$.
- 2. For $i = 1, 2, \ldots, m$,

- (a) Receive $x_i \in \mathcal{X}$.
- (b) Predict $h_{i-1}(x_i)$.
- (c) Receive $y_i \in \mathcal{Y}$.
- (d) Suffer loss $l(h_{i-1}; (x_i, y_i))$.
- (e) Update $h_i \leftarrow \mathcal{A}(h_{i-1}; (x_i, y_i))$ (where \mathcal{A} denotes the online algorithm).

Remarks

Now let $f(S) = \frac{1}{m} \left[\sum_{i=1}^{m} l(h_{i-1}; \mathcal{D}) - \sum_{i=1}^{m} l(h_{i-1}; (x_i, y_i)) \right]$. Define $\sum_{i=1}^{m} l(h_{i-1}; (x_i, y_i))$ to be the cumulative loss. We make the following remarks.

- 1. $l(h_{i-1}; \mathcal{D})$ is a random variable (since h_{i-1} is a function of $(x_j, y_j)_{j=1}^{i-1}$ that are drawn i.i.d from \mathcal{D}).
- 2. $l(h_{i-1}; (x_i, y_i))$ is a random variable (with randomness in $(x_j, y_j)_{j=1}^i$).
- 3. $\mathsf{E}[l(h_{i-1}; (x_i, y_i))|(x_j, y_j)_{j=1}^{i-1}] = \mathsf{E}_{(x_i, y_i)}[l(h_{i-1}; (x_i, y_i))] = l(h_{i-1}; \mathcal{D}).$
- 4. If $l \in [0, c]$ then $W_i = \mathsf{E}[f(S)|(x_j, y_j)_{j=1}^i]$ is a Doob martingale with $\frac{c}{m}$ -bounded differences.

Theorem 7. $\forall \delta > 0, w.p. \geq 1 - \delta$ over the random (i.i.d) sampling of $S \in \mathcal{D}^m$,

$$f(S) \le c \sqrt{\frac{\log(\frac{1}{\delta})}{2m}} \tag{8}$$

Proof. Remark 4 states that $W_i = \mathsf{E}[f(S)|(x_j, y_j)_{j=1}^i]$ is a doob martingale. $W_0 = \mathsf{E}[f(S)]$ and $W_m = f(S)$. Thus, by Hoeffding-Azuma inequality(Fact 6), it follows that w.p. $\geq 1 - \delta$,

$$W_m - W_0 \leq c\sqrt{\frac{\log(\frac{1}{\delta})}{2m}}$$

$$f(S) - \mathsf{E}[f(S)] \leq c\sqrt{\frac{\log(\frac{1}{\delta})}{2m}}$$
(9)

It also follows from Remark 3 that $\mathsf{E}[f(S)] = 0$ and hence the theorem follows.

Remark

Let $\frac{1}{m}[\sum_{i=1}^{m} l(h_{i-1}; \mathcal{D})]$ denote the average risk of $\{h_0, \ldots, h_{m-1}\}$. Also let \mathcal{Q} be the uniform distribution over $\{h_0, \ldots, h_{m-1}\}$. Then, the previous theorem implies that w.p. $\geq 1 - \delta$,

$$l(\mathcal{Q}; \mathcal{D}) \le \frac{1}{m} \sum_{i=1}^{m} l(h_{i-1}; (x_i, y_i)) + c \sqrt{\frac{\log(\frac{1}{\delta})}{2m}}$$

$$\tag{10}$$