CSE522, Winter 2011, Learning Theory	Lecture 16-02/24/2011
Online to offline, constrained subgradient descent	
Lecturer: Ofer Dekel	Scribe: Jinna Lei

1 Review

1.1 Doob martingale

$$
\begin{gathered}
\forall i=0, \ldots, m W_{i}=\mathbb{E}\left[F\left(u_{1}, \ldots, u_{m}\right) \mid u_{1}, \ldots, u_{i}\right] \\
W_{0}=\mathbb{E}\left[f\left(u_{1}, \ldots, u_{m}\right)\right] \\
W_{m}=f\left(u_{1}, \ldots, u_{m}\right) \\
\left|W_{i}-W_{i-1}\right|<c / m
\end{gathered}
$$

1.2 Online learning algorithm

In the following, U is an update function.

```
Algorithm 1 Online learning
    Pick default \(h_{0} \in H\)
    for \(i=1, \ldots, m\) do
        receive \(x_{i} \in X\)
        predict \(h_{t-1}\left(x_{i}\right)\)
        receive \(y_{i} \in Y\)
        suffer loss \(l\left(h_{t-1}\left(x_{i}, y_{i}\right)\right.\)
        update \(h_{i} \leftarrow U\left(h_{t-1},\left(x_{i}, y_{i}\right)\right.\) (or, alternatively, \(h_{i} \leftarrow U\left(h_{0},\left\{x_{j}, y_{j}\right\}_{j=0}^{i}\right)\).
    end for
```

Note that there are no explicit limitations on the initial function h_{0}, but the update function U encodes an implicit restriction on the subsequent h_{i}. In addition, "memorizing answers" is not a valid strategy, since this algorithm incurs loss based on the new sample in the next iteration.

1.3 Guarantee on cumulative loss

Let Q be a uniform distribution on h_{0}, \ldots, h_{m} and ℓ a loss function with range in $[0, c]$. With probability at least $1-\delta$ over $S \sim \mathcal{D}^{m}$ for any update strategy U,

$$
\ell(Q ; \mathcal{D}) \leq \frac{1}{m} \sum_{i=1}^{m} \ell\left(h_{i-1} ;\left(x_{i}, y_{i}\right)\right)+c \sqrt{\frac{\log (1 / \delta)}{2 m}}
$$

We want two things of our learning algorithm: for the cumulative loss $\sum_{i=1}^{m} \ell\left(h_{i-1} ;\left(x_{i}, y_{i}\right)\right)$ to grow as $O(\sqrt{m})$, and the excess risk $\ell(\bar{h} ; \mathcal{D})-\ell\left(h^{*} ; \mathcal{D}\right)$ to go to 0 . Note that the latter condition is not a constraint on $\ell(\bar{h} ; \mathcal{D})$ itself; it only bounds the difference between our hypothesis and the best hypothesis in hindsight.

2 Online learning to offline learning: constrained subgradient descent

2.1 Subgradients

Definition 1 (subgradient). Let f be a convex function with domain \mathbb{R}^{n}. Let $w \in \mathbb{R}^{n}$. The subgradient of f at w is a vector v such that $\forall w^{\prime} \in \mathbb{R}^{n}$,

$$
f\left(w^{\prime}\right)-f(w) \geq\left\langle v, w^{\prime}-w\right\rangle
$$

or equivalently, $f\left(w^{\prime}\right) \geq f(w)+\left\langle v, w^{\prime}-w\right\rangle$.
We will denote the subgradient of f at w by $\nabla f(w)$.
If f is differentiable at w, then the gradient is the only subgradient.
[A graph goes here]

2.1.1 Example: Hinge loss

Notation: $[z]_{+}=\max (z, 0)$.

Claim 2.

$$
\nabla_{w}[1-y\langle w, x\rangle]_{+}= \begin{cases}0 & y\langle w, x\rangle \geq 1 \\ -y x & y\langle w, x\rangle<1\end{cases}
$$

Proof. Trivial if $y\langle w, x\rangle \geq 1$, so assume $y\langle w, x\rangle<1$.

$$
\begin{aligned}
& {\left[1-y\left\langle w^{\prime}, x\right\rangle\right]_{+}-[1-y\langle w, x\rangle]+} \\
\geq & \left(1-y\left\langle w^{\prime}, x\right\rangle\right)-(1-y\langle w, x\rangle) \\
= & \left(y-y\left\langle w^{\prime}, x\right\rangle\right)-(x-y\langle w, x\rangle) \\
\geq & \left\langle-y x, w^{\prime}-w\right\rangle
\end{aligned}
$$

2.1.2 Example: Log loss

$$
\nabla \log \left(1+e^{-y\langle w, x\rangle}\right)=\frac{1}{1+e^{-y\langle w, x\rangle}}(-y x)
$$

[Another graphic goes here]

2.2 Subgradient descent algorithm

This is our general online algorithm, with the update strategy U explicitly specified as the subgradient and projection steps.
Definition 3 (Online regret). The online regret of an online algorithm \mathcal{A} is

$$
\sum_{i=1}^{m} \ell\left(h_{i-1} ;\left(x_{i}, y_{i}\right)\right)-\min _{h \in H} \sum_{i=1}^{m} \ell\left(h ;\left(x_{i}, y_{i}\right)\right),
$$

or, intuitively, the cumulative loss of of \mathcal{A} compared to the cumulative loss of the best fixed hypothesis in hindsight.

```
Algorithm 2 Subgradient descent (GD)
    Init w
    for }i=1,\ldots,m\mathrm{ do
        receive }x\in\mp@subsup{\mathbb{R}}{}{n
        predict }\langle\mp@subsup{w}{i-1}{},\mp@subsup{x}{i}{}
        receive }y\in\mp@subsup{\mathbb{R}}{}{n
        suffer loss \ell(y\langlew,x\rangle)
        wi-1
        wi}\leftarrow\mp@code{min}(1,\frac{B}{|\mp@subsup{w}{i-1}{\prime}|})\mp@subsup{w}{i-1}{\prime}\quad(projection step)
    end for
```

Regret is the online equivalent of excess risk.
Theorem 4. The regret of $G D \leq \eta=\frac{B}{\sqrt{m} \lambda X}$, where $\|w\| \leq B$, ℓ is λ-Lipschitz, and $\|x\| \leq X$.
Proof. Let H be the ball of radius B. Choose $w^{*} \in H$ arbitrarily. Define: $\alpha_{i}:=\beta_{i}+\gamma_{i}$, where

$$
\begin{aligned}
\beta_{i} & :=\frac{1}{2}\left\|w_{i-1}-w^{*}\right\|^{2}-\frac{1}{2}\left\|w_{i-1}^{\prime}-w^{*}\right\|^{2}, \\
\gamma_{i} & :=\frac{1}{2}\left\|w_{i-1}^{\prime}-w^{*}\right\|^{2}-\frac{1}{2}\left\|w_{i}-w^{*}\right\|^{2} .
\end{aligned}
$$

Lemma 5. $\gamma_{i} \geq 0$
Proof. (Intuitively, projection onto a convex set brings you closer to any point in the convex set.)
Case 1: $\left\|w_{i-1}^{\prime}\right\| \leq B \Rightarrow w_{i}=w_{i-1}^{\prime} \Rightarrow \gamma_{i}=0$.
Case 2: $\left\|w_{i-1}^{\prime}\right\|>B \Rightarrow w_{i}=\frac{B}{\left\|w_{i-1}^{\prime}\right\|} w_{i-1}^{\prime} \Rightarrow$

$$
\begin{aligned}
\gamma_{i} & =\frac{1}{2}\left\|w_{i-1}^{\prime}\right\|^{2}+\frac{1}{2}\left\|w^{*}\right\|^{2}-\left\langle w_{i-1}^{\prime}, w^{*}\right\rangle-\frac{1}{2}\left\|w_{i}\right\|^{2}-\frac{1}{2}\left\|w^{*}\right\|^{2}+\left\langle w_{i}, w^{*}\right\rangle \\
& =\frac{1}{2}\left\|w_{i-1}^{2}\right\|-\frac{1}{2} B^{2}-\left(1-\frac{B}{\left\|w_{i-1}^{\prime}\right\|}\right)\left\langle w_{i-1}^{\prime}, w^{*}\right\rangle \\
& \geq \frac{1}{2}\left\|w_{i-1}^{\prime}\right\|-\frac{1}{2} B^{2}-\left(1-\frac{B}{\left\|w_{i-1}^{*}\right\|}\right)\left\|w_{i-1}^{\prime}\right\|\left\|w^{*}\right\| \\
& \geq \frac{1}{2}\left\|w_{i-1}^{\prime}\right\|-\frac{1}{2} B^{2}-\left(1-\frac{B}{\left\|w_{i-1}^{\prime}\right\|}\right)\left\|w_{i-1}^{\prime}\right\| B \\
& =\frac{1}{2}\left\|w_{i-1}^{\prime}\right\|^{2}+\frac{1}{2} B^{2}-\left\|w_{i-1}\right\| B \\
& =\frac{1}{2}\left(\left\|w_{i-1}^{\prime}\right\|-B\right)^{2} \\
& \geq 0
\end{aligned}
$$

Lemma 6.

$$
\beta_{i} \geq-\frac{\eta^{2} \lambda^{2} X^{2}}{2}+\eta\left(\ell\left(w_{i-1} ;\left(x_{i}, y_{i}\right)\right)-\ell\left(w^{*} ;\left(x_{i}, y_{i}\right)\right)\right)
$$

Proof. By the definition of w_{i-1}^{\prime},

$$
\frac{1}{2}\left\|w_{i-1}^{\prime}-w^{*}\right\|=\frac{1}{2}\left\|w_{i-1}-w^{*}-\eta \nabla \ell\left(w_{i-1}\right)\right\|^{2}
$$

Thus,

$$
\begin{aligned}
\beta_{i} & =\frac{1}{2}\left\|w_{i-1}-w^{*}\right\|^{2}-\frac{1}{2}\left\|w_{i-1}^{\prime}-w^{*}\right\|^{2} \\
& =\frac{1}{2}\left\|w_{i-1}-w^{*}\right\|^{2}-\frac{1}{2}\left\|w_{i-1}-w^{*}\right\|^{2}-\frac{\eta^{2}}{2}\left\|\nabla \ell\left(w_{i-1}\right)\right\|^{2}+\eta\left\langle w_{i-1}-w^{*}, \nabla \ell\left(w_{i-1}\right)\right\rangle \\
& \geq-\frac{\eta^{2}}{2} \lambda^{2} X^{2}+\eta\left(\ell\left(w_{i-1} ;\left(x_{i}, y_{i}\right)\right)-\ell\left(w^{*} ;\left(x_{i}, y_{i}\right)\right)\right)
\end{aligned}
$$

where the last inequality is by the λ-Lipschitz condition and the definition of subgradient.
Putting it all together:

$$
\begin{aligned}
\sum_{i=1}^{m} \alpha_{i} & =\sum_{i=1}^{m} \beta_{i}+\gamma_{i} \\
& \leq \sum_{i=1}^{m} \beta_{i} \\
& \leq \frac{1}{2} m \eta^{2} \lambda^{2} X^{2}+\eta \sum_{i=1}^{m}\left(\ell\left(w_{i-1} ;\left(x_{i}, y_{i}\right)\right)-\ell\left(w^{*} ;\left(x_{i}, y_{i}\right)\right)\right)
\end{aligned}
$$

The first equality is from Lemma 5 and the second from Lemma 6. Now we use $\eta=\frac{B}{\sqrt{m} \lambda X}$ to get

$$
\begin{aligned}
-\frac{1}{2} m \eta^{2} \lambda^{2} X^{2} & +\eta \sum_{i=1}^{m} \ell\left(w_{i-1} ;\left(x_{i}, y_{i}\right)\right)-\ell\left(w^{*} ;\left(x_{i}, y_{i}\right)\right) \leq \frac{1}{2} B^{2} \\
& \Rightarrow \text { regret } \leq \frac{B^{2}}{2 \eta}+\frac{1}{2} m \eta \lambda^{2} X^{2}
\end{aligned}
$$

To be continued...

