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Online to offline, constrained subgradient descent
Lecturer: Ofer Dekel Scribe: Jinna Lei

1 Review

1.1 Doob martingale

∀i = 0, . . . ,mWi = E[F (u1, . . . , um)|u1, . . . , ui]
W0 = E[f(u1, . . . , um)]

Wm = f(u1, . . . , um)

|Wi −Wi−1| < c/m

1.2 Online learning algorithm

In the following, U is an update function.

Algorithm 1 Online learning

Pick default h0 ∈ H
for i = 1, . . . ,m do

receive xi ∈ X
predict ht−1(xi)
receive yi ∈ Y
suffer loss l(ht−1(xi, yi)
update hi ← U(ht−1, (xi, yi)) (or, alternatively, hi ← U(h0, {xj , yj}ij=0).

end for

Note that there are no explicit limitations on the initial function h0, but the update function U encodes
an implicit restriction on the subsequent hi. In addition,“memorizing answers” is not a valid strategy, since
this algorithm incurs loss based on the new sample in the next iteration.

1.3 Guarantee on cumulative loss

Let Q be a uniform distribution on h0, . . . , hm and ` a loss function with range in [0, c]. With probability at
least 1− δ over S ∼ Dm for any update strategy U ,

`(Q;D) ≤ 1

m

m∑
i=1

`(hi−1; (xi, yi)) + c

√
log(1/δ)

2m

We want two things of our learning algorithm: for the cumulative loss
∑m
i=1 `(hi−1; (xi, yi)) to grow as

O(
√
m), and the excess risk `(h̄;D)− `(h∗;D) to go to 0. Note that the latter condition is not a constraint

on `(h̄;D) itself; it only bounds the difference between our hypothesis and the best hypothesis in hindsight.
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2 Online learning to offline learning: constrained subgradient de-
scent

2.1 Subgradients

Definition 1 (subgradient). Let f be a convex function with domain Rn. Let w ∈ Rn. The subgradient of
f at w is a vector v such that ∀w′ ∈ Rn,

f(w′)− f(w) ≥ 〈v, w′ − w〉,

or equivalently, f(w′) ≥ f(w) + 〈v, w′ − w〉.
We will denote the subgradient of f at w by ∇f(w).

If f is differentiable at w, then the gradient is the only subgradient.
[A graph goes here]

2.1.1 Example: Hinge loss

Notation: [z]+ = max(z, 0).

Claim 2.

∇w[1− y〈w, x〉]+ =


0 y〈w, x〉 ≥ 1

−yx y〈w, x〉 < 1

Proof. Trivial if y〈w, x〉 ≥ 1, so assume y〈w, x〉 < 1.

[1− y〈w′, x〉]+ − [1− y〈w, x〉]+
≥(1− y〈w′, x〉)− (1− y〈w, x〉)
=(y − y〈w′, x〉)− (x− y〈w, x〉)
≥〈−yx,w′ − w〉

2.1.2 Example: Log loss

∇ log(1 + e−y〈w,x〉) =
1

1 + e−y〈w,x〉
(−yx)

[Another graphic goes here]

2.2 Subgradient descent algorithm

This is our general online algorithm, with the update strategy U explicitly specified as the subgradient
and projection steps.

Definition 3 (Online regret). The online regret of an online algorithm A is

m∑
i=1

`(hi−1; (xi, yi))−min
h∈H

m∑
i=1

`(h; (xi, yi)),

or, intuitively, the cumulative loss of of A compared to the cumulative loss of the best fixed hypothesis in
hindsight.
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Algorithm 2 Subgradient descent (GD)

Init w1 = 0
for i = 1, . . . ,m do

receive x ∈ Rn
predict 〈wi−1, xi〉
receive y ∈ Rn
suffer loss `(y〈w, x〉)
w′i−1 ← wi−1 − η∇`(wi−1) (subgradient step)

wi ← min(1, B
||w′i−1||

)w′i−1 (projection step)

end for

Regret is the online equivalent of excess risk.

Theorem 4. The regret of GD ≤ η = B√
mλX

, where ||w|| ≤ B, ` is λ-Lipschitz, and ||x|| ≤ X.

Proof. Let H be the ball of radius B. Choose w∗ ∈ H arbitrarily. Define: αi := βi + γi, where

βi :=
1

2
||wi−1 − w∗||2 −

1

2
||w′i−1 − w∗||2,

γi :=
1

2
||w′i−1 − w∗||2 −

1

2
||wi − w∗||2.

Lemma 5. γi ≥ 0

Proof. (Intuitively, projection onto a convex set brings you closer to any point in the convex set.)
Case 1: ||w′i−1|| ≤ B ⇒ wi = w′i−1 ⇒ γi = 0.

Case 2: ||w′i−1|| > B ⇒ wi = B
||w′i−1||

w′i−1 ⇒

γi =
1

2
||w′i−1||2 +

1

2
||w∗||2 − 〈w′i−1, w∗〉 −

1

2
||wi||2 −

1

2
||w∗||2 + 〈wi, w∗〉

=
1

2
||w2

i−1|| −
1

2
B2 − (1− B

||w′i−1||
)〈w′i−1, w∗〉

≥ 1

2
||w′i−1|| −

1

2
B2 − (1− B

||w∗i−1||
)||w′i−1||||w∗||

≥ 1

2
||w′i−1|| −

1

2
B2 − (1− B

||w′i−1||
)||w′i−1||B

=
1

2
||w′i−1||2 +

1

2
B2 − ||wi−1||B

=
1

2
(||w′i−1|| −B)2

≥ 0

Lemma 6.

βi ≥ −
η2λ2X2

2
+ η(`(wi−1; (xi, yi))− `(w∗; (xi, yi))).
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Proof. By the definition of w′i−1,

1

2
||w′i−1 − w∗|| =

1

2
||wi−1 − w∗ − η∇`(wi−1)||2.

Thus,

βi =
1

2
||wi−1 − w∗||2 −

1

2
||w′i−1 − w∗||2

=
1

2
||wi−1 − w∗||2 −

1

2
||wi−1 − w∗||2 −

η2

2
||∇`(wi−1)||2 + η〈wi−1 − w∗,∇`(wi−1)〉

≥ − η2

2
λ2X2 + η(`(wi−1; (xi, yi))− `(w∗; (xi, yi))),

where the last inequality is by the λ-Lipschitz condition and the definition of subgradient.

Putting it all together:

m∑
i=1

αi =

m∑
i=1

βi + γi

≤
m∑
i=1

βi

≤1

2
mη2λ2X2 + η

m∑
i=1

(`(wi−1; (xi, yi))− `(w∗; (xi, yi))).

The first equality is from Lemma 5 and the second from Lemma 6. Now we use η = B√
mλX

to get

−1

2
mη2λ2X2 + η

m∑
i=1

`(wi−1; (xi, yi))− `(w∗; (xi, yi)) ≤
1

2
B2

⇒ regret ≤ B2

2η
+

1

2
mηλ2X2.

To be continued...
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