CSE522, Winter 2011, Learning Theory	Lecture 16 - $02/24/2011$
Online to offline, constrained subgrad	dient descent
Lecturer: Ofer Dekel	Scribe: Jinna Lei

1 Review

1.1 Doob martingale

 $\forall i = 0, \dots, mW_i = \mathbb{E}[F(u_1, \dots, u_m) | u_1, \dots, u_i]$ $W_0 = \mathbb{E}[f(u_1, \dots, u_m)]$ $W_m = f(u_1, \dots, u_m)$ $|W_i - W_{i-1}| < c/m$

1.2 Online learning algorithm

In the following, U is an update function.

Algorithm 1 Online learning

Pick default $h_0 \in H$ for $i = 1, \ldots, m$ do receive $x_i \in X$ predict $h_{t-1}(x_i)$ receive $y_i \in Y$ suffer loss $l(h_{t-1}(x_i, y_i))$ update $h_i \leftarrow U(h_{t-1}, (x_i, y_i))$ (or, alternatively, $h_i \leftarrow U(h_0, \{x_j, y_j\}_{j=0}^i)$. end for

Note that there are no explicit limitations on the initial function h_0 , but the update function U encodes an implicit restriction on the subsequent h_i . In addition, "memorizing answers" is not a valid strategy, since this algorithm incurs loss based on the new sample in the next iteration.

1.3 Guarantee on cumulative loss

Let Q be a uniform distribution on h_0, \ldots, h_m and ℓ a loss function with range in [0, c]. With probability at least $1 - \delta$ over $S \sim \mathcal{D}^m$ for any update strategy U,

$$\ell(Q; \mathcal{D}) \le \frac{1}{m} \sum_{i=1}^{m} \ell(h_{i-1}; (x_i, y_i)) + c \sqrt{\frac{\log(1/\delta)}{2m}}$$

We want two things of our learning algorithm: for the cumulative loss $\sum_{i=1}^{m} \ell(h_{i-1}; (x_i, y_i))$ to grow as $O(\sqrt{m})$, and the excess risk $\ell(\bar{h}; \mathcal{D}) - \ell(h^*; \mathcal{D})$ to go to 0. Note that the latter condition is not a constraint on $\ell(\bar{h}; \mathcal{D})$ itself; it only bounds the difference between our hypothesis and the best hypothesis in hindsight.

2 Online learning to offline learning: constrained subgradient descent

2.1 Subgradients

Definition 1 (subgradient). Let f be a convex function with domain \mathbb{R}^n . Let $w \in \mathbb{R}^n$. The subgradient of f at w is a vector v such that $\forall w' \in \mathbb{R}^n$,

$$f(w') - f(w) \ge \langle v, w' - w \rangle$$

or equivalently, $f(w') \ge f(w) + \langle v, w' - w \rangle$.

We will denote the subgradient of f at w by $\nabla f(w)$.

If f is differentiable at w, then the gradient is the only subgradient. [A graph goes here]

2.1.1 Example: Hinge loss

Notation: $[z]_{+} = \max(z, 0).$

Claim 2.

$$\nabla_w [1 - y \langle w, x \rangle]_+ = \begin{cases} 0 & y \langle w, x \rangle \ge 1 \\ \\ -yx & y \langle w, x \rangle < 1 \end{cases}$$

Proof. Trivial if $y\langle w, x \rangle \ge 1$, so assume $y\langle w, x \rangle < 1$.

$$[1 - y\langle w', x \rangle]_{+} - [1 - y\langle w, x \rangle]_{+}$$

$$\geq (1 - y\langle w', x \rangle) - (1 - y\langle w, x \rangle)$$

$$= (y - y\langle w', x \rangle) - (x - y\langle w, x \rangle)$$

$$\geq \langle -yx, w' - w \rangle$$

-		
		1
		1
		1

2.1.2 Example: Log loss

$$\nabla \log(1 + e^{-y\langle w, x \rangle}) = \frac{1}{1 + e^{-y\langle w, x \rangle}} (-yx)$$

[Another graphic goes here]

2.2 Subgradient descent algorithm

This is our general online algorithm, with the update strategy U explicitly specified as the subgradient and projection steps.

Definition 3 (Online regret). The online regret of an online algorithm \mathcal{A} is

$$\sum_{i=1}^{m} \ell(h_{i-1}; (x_i, y_i)) - \min_{h \in H} \sum_{i=1}^{m} \ell(h; (x_i, y_i)),$$

or, intuitively, the cumulative loss of of A compared to the cumulative loss of the best fixed hypothesis in hindsight.

Algorithm 2 Subgradient descent (GD)

```
Init w_1 = 0
for i = 1, ..., m do
receive x \in \mathbb{R}^n
predict \langle w_{i-1}, x_i \rangle
receive y \in \mathbb{R}^n
suffer loss \ell(y \langle w, x \rangle)
w'_{i-1} \leftarrow w_{i-1} - \eta \nabla \ell(w_{i-1}) (subgradient step)
w_i \leftarrow \min(1, \frac{B}{||w'_{i-1}||})w'_{i-1} (projection step)
end for
```

Regret is the online equivalent of excess risk.

Theorem 4. The regret of $GD \leq \eta = \frac{B}{\sqrt{m\lambda X}}$, where $||w|| \leq B$, ℓ is λ -Lipschitz, and $||x|| \leq X$. Proof. Let H be the ball of radius B. Choose $w^* \in H$ arbitrarily. Define: $\alpha_i := \beta_i + \gamma_i$, where

$$\begin{split} \beta_i &:= \frac{1}{2} ||w_{i-1} - w^*||^2 - \frac{1}{2} ||w_{i-1}' - w^*||^2, \\ \gamma_i &:= \frac{1}{2} ||w_{i-1}' - w^*||^2 - \frac{1}{2} ||w_i - w^*||^2. \end{split}$$

Lemma 5. $\gamma_i \ge 0$

 $\begin{array}{l} Proof. \ (\text{Intuitively, projection onto a convex set brings you closer to any point in the convex set.})\\ \text{Case 1: } ||w_{i-1}'|| \leq B \Rightarrow w_i = w_{i-1}' \Rightarrow \gamma_i = 0.\\ \text{Case 2: } ||w_{i-1}'|| > B \Rightarrow w_i = \frac{B}{||w_{i-1}'||} w_{i-1}' \Rightarrow \\ \gamma_i = \frac{1}{2} ||w_{i-1}'||^2 + \frac{1}{2} ||w^*||^2 - \langle w_{i-1}', w^* \rangle - \frac{1}{2} ||w_i||^2 - \frac{1}{2} ||w^*||^2 + \langle w_i, w^* \rangle \\ = \frac{1}{2} ||w_{i-1}^2|| - \frac{1}{2}B^2 - (1 - \frac{B}{||w_{i-1}'||}) \langle w_{i-1}', w^* \rangle \\ \geq \frac{1}{2} ||w_{i-1}'|| - \frac{1}{2}B^2 - (1 - \frac{B}{||w_{i-1}'||}) ||w_{i-1}'||||w^*|| \\ \geq \frac{1}{2} ||w_{i-1}'|| - \frac{1}{2}B^2 - (1 - \frac{B}{||w_{i-1}'||}) ||w_{i-1}'||B \\ = \frac{1}{2} ||w_{i-1}'||^2 + \frac{1}{2}B^2 - (1 - \frac{B}{||w_{i-1}'||}) ||w_{i-1}'||B \\ = \frac{1}{2} ||w_{i-1}'||^2 + \frac{1}{2}B^2 - ||w_{i-1}||B \\ = \frac{1}{2} (||w_{i-1}'|| - B)^2 \\ \geq 0 \end{array}$

Lemma 6.

$$\beta_i \ge -\frac{\eta^2 \lambda^2 X^2}{2} + \eta(\ell(w_{i-1}; (x_i, y_i)) - \ell(w^*; (x_i, y_i))).$$

Proof. By the definition of w'_{i-1} ,

$$\frac{1}{2}||w_{i-1}' - w^*|| = \frac{1}{2}||w_{i-1} - w^* - \eta \nabla \ell(w_{i-1})||^2.$$

Thus,

$$\begin{split} \beta_{i} &= \frac{1}{2} ||w_{i-1} - w^{*}||^{2} - \frac{1}{2} ||w_{i-1}' - w^{*}||^{2} \\ &= \frac{1}{2} ||w_{i-1} - w^{*}||^{2} - \frac{1}{2} ||w_{i-1} - w^{*}||^{2} - \frac{\eta^{2}}{2} ||\nabla \ell(w_{i-1})||^{2} + \eta \langle w_{i-1} - w^{*}, \nabla \ell(w_{i-1}) \rangle \\ &\geq - \frac{\eta^{2}}{2} \lambda^{2} X^{2} + \eta (\ell(w_{i-1}; (x_{i}, y_{i})) - \ell(w^{*}; (x_{i}, y_{i}))), \end{split}$$

where the last inequality is by the λ -Lipschitz condition and the definition of subgradient.

Putting it all together:

$$\sum_{i=1}^{m} \alpha_{i} = \sum_{i=1}^{m} \beta_{i} + \gamma_{i}$$

$$\leq \sum_{i=1}^{m} \beta_{i}$$

$$\leq \frac{1}{2} m \eta^{2} \lambda^{2} X^{2} + \eta \sum_{i=1}^{m} (\ell(w_{i-1}; (x_{i}, y_{i})) - \ell(w^{*}; (x_{i}, y_{i}))).$$

The first equality is from Lemma 5 and the second from Lemma 6. Now we use $\eta = \frac{B}{\sqrt{m\lambda X}}$ to get

$$-\frac{1}{2}m\eta^2\lambda^2 X^2 + \eta \sum_{i=1}^m \ell(w_{i-1}; (x_i, y_i)) - \ell(w^*; (x_i, y_i)) \le \frac{1}{2}B^2$$
$$\Rightarrow \text{ regret } \le \frac{B^2}{2\eta} + \frac{1}{2}m\eta\lambda^2 X^2.$$

To be continued...

- 11		
- 12	-	_