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Online to offline, constrained subgradient descent
Lecturer: Ofer Dekel Scribe: Jinna Lei

1 Review

1.1 Doob martingale

Vi=0,....mW; =E[F(u1,...,un)u,...,u
Wo =E[f(u1,...,um)]
Wi = flug, ..., tum)
Wi = Wi_1| < ¢/m

1.2 Online learning algorithm

In the following, U is an update function.

Algorithm 1 Online learning
Pick default hg € H
for ¢=1,...,m do
receive x; € X
predict hi_q(x;)
receive y; €Y
suffer loss l(hi—1(zs, i)
update h; < U(hi—1, (z4,%:)) (or, alternatively, h; « Ul(ho,{x;,y;}i—0)-
end for

Note that there are no explicit limitations on the initial function hg, but the update function U encodes
an implicit restriction on the subsequent h;. In addition, “memorizing answers” is not a valid strategy, since
this algorithm incurs loss based on the new sample in the next iteration.

1.3 Guarantee on cumulative loss

Let @ be a uniform distribution on hy, ..., k., and ¢ a loss function with range in [0, ¢]. With probability at
least 1 — § over S ~ D™ for any update strategy U,

1 & log(1/4)
UQ;D) < — > A(hi—1; (x4, yi —
(@P) < >t ) ey
We want two things of our learning algorithm: for the cumulative loss Y " £(hi_1; (x4, y:)) to grow as
O(y/m), and the excess risk £(h; D) — £(h*; D) to go to 0. Note that the latter condition is not a constraint

on £(h; D) itself; it only bounds the difference between our hypothesis and the best hypothesis in hindsight.



2  Online learning to offline learning: constrained subgradient de-
scent

2.1 Subgradients

Definition 1 (subgradient). Let f be a convex function with domain R™. Let w € R™. The subgradient of
f at w is a vector v such that Vw' € R™,

f') = fw) = {v,w" —w),

or equivalently, f(w') > f(w) + (v, w’ — w).
We will denote the subgradient of f at w by V f(w).

If f is differentiable at w, then the gradient is the only subgradient.
[A graph goes here]

2.1.1 Example: Hinge loss

Notation: [z]4 = max(z,0).

Claim 2.

[1 - y<w 7$>]+ - [1 - y<w7‘r>]+
>(1 - y(w',z)) — (1 - y(w,z))
=(y —y(w',z)) — (v — y(w,z))
>(—yx,w' — w)

2.1.2 Example: Log loss

1
Viog(1 + e_y<“”z>) =

- 1+ e_y<w7x> (—yx)

[Another graphic goes here]

2.2 Subgradient descent algorithm

This is our general online algorithm, with the update strategy U explicitly specified as the subgradient
and projection steps.

Definition 3 (Online regret). The online regret of an online algorithm A is

m m

Zﬁ(hi_l; (wir90) = min 3 0k (@i, ),

i=1 i=1
or, intuitively, the cumulative loss of of A compared to the cumulative loss of the best fixed hypothesis in
hindsight.



Algorithm 2 Subgradient descent (GD)

Init w1 =0
for ¢=1,...,m do

receive z € R"

predict (w;_1,x;)

receive y € R"

suffer loss {(y(w,z))

wj_q  wj—1 —nVLl(w;—1) (subgradient step)
w; < min(1, ﬁ)wg_l (projection step)
end for

Regret is the online equivalent of excess risk.

Theorem 4. The regret of GD < n = ﬁ, where ||w|| < B, € is A-Lipschitz, and ||z|| < X.

Proof. Let H be the ball of radius B. Choose w* € H arbitrarily. Define: «; := 5; + ~;, where

1 . 1 «
Bi = §||wi*1_w H2 §||w£71 w HQﬂ

1 * 1 *
= s =2 = S — w2

Lemma 5. v; >0

Proof. (Intuitively, projection onto a convex set brings you closer to any point in the convex set.)
Case 1: ||w_4|| < B=w; =w,_, = v, =0.

Case 2: ||w]_4|| > B= w; = ﬁwg_l =
e = gl a2 el = g, w0%) = 2ol = Sl s, )
= Slutall - 5B~ (1= )
> glwioall = 552 = (1= ']
> il = 582 = (1= o) lwil1B

1 1

5”“’;71”2 + 532 — |[wi-1||B
1
2
>0

(llwi 1l = B)?

Lemma 6.

—— tnll(wi-; (@i, 3:)) — (w5 (24, 9i)))-



Proof. By the definition of w]_,,

1
Sllwisy —w'|| = Sllwimy — w* = nVe(wi_1)]>.
2 2
Thus,
1 * 1 *
i =g llwis w1 = S iy - w |
1 1

=5 llwi —w||* =

2
Qsz‘fl —w*|]* - 77?HVE(WA)H2 +n(wi—1 —w*, V& (w;_1))
2
> — TN 4 (Uwims; (@i,9) = 6w (@i,9:)),

where the last inequality is by the A-Lipschitz condition and the definition of subgradient.
Putting it all together:

m m

dai =Y Bi+
i=1 i=1
m

SZ@‘

i=1

g%mn2/\2X2 +7 Z(ﬁ(wi—n (w4, yi) — L(w™; (i, 9:)))-

i=1

The first equality is from Lemma 5 and the second from Lemma 6. Now we use n = ﬁ to get

1 - . 1
—gmiP N X2 Y wie (v ) — w”s (2,9) < 5B
i=1
B2 1
= regret < — + fmn)\ZXQ.
2n 2
To be continued...



