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Online to Batch Conversion
Lecturer: Ofer Dekel Scribe: Krishnamurthy Dvijotham

1 Recap of Online Learning Algorithms

Traditional supervised learning is formulated as learning from a given data set while being able to generalize
to unseen data. It is usually assumed that both the given and unseen data are drawn iid from the same
(unknown) distribution. In online learning, we make no assumption about the source of data. One simply
observes a stream of data coming from some arbitrary source one by one. At every step, the online learning
algorithm tries to make a correct prediction for the next data point. After making the prediction, it observes
the true label and updates its hypothesis in light of the new evidence. The goal is to minimize regret:

m∑
i=1

l(hi−1; (xi, yi))−min
h∈H

m∑
i=1

l(h; (xi, yi))

This basically says that the online learning algorithm wants performance close to the single best hypothesis
chosen in hindsight given all the data. This is a very general notion of performance that makes sense even
when the data is generated by an adversary who is trying to trick the algorithm. In fact, it can be seen as a
zero-sum repeated game where the algorithm is trying to minimize the regret while the adversary generating
the data is trying to maximize it.

We can take any online learning algorithm and use it for supervised learning as follows: Run the online
algorithm on the fixed data set (given in any arbitrary order) and output a randomized hypothesis that
has a uniform distribution Q on the hypotheses h0, h1, . . . , hm−1. We showed in the last lecture, using an
argument based on a Doob Martingale+Azuma’s inequality that:

l (Q;D) ≤ 1

m

(∑
i

l (hi−1; (xi, yi))

)
+ c

√
log
(
1
δ

)
2m

(1)

Thus, if we have bounds on the regret of an online learning algorithm, we can combine the above bound
with the Hoeffding bound to obtain a bound on the excess risk of the randomized hypothesis Q.

2 Constrained Subgradient Descent (GD)

Consider the class of linear predictors H = {w ∈ Rn : ‖w‖2 ≤ B} on the input space X = {x ∈ Rn : ‖x‖2 ≤
X}. Let l be a λ-Lipschtiz convex loss function bounded in [0,c]. Let li(w) = l(w; (xi, yi)) and ∇li(w)
denote a subgradient of li at w. Let

∏
[w] denote the projection of w onto the H (here

∏
[w] = B

‖w‖w). The

constrained subgradient descent algorithm works as follows:

2.1 Bounding the Regret

Theorem 1. Let H = {w ∈ Rn : ‖w‖2 ≤ B},X = {x ∈ Rn : ‖x‖2 ≤ X}. Let l be a convex λ-Lipschitz
loss function. Let w∗ ∈ H be any fixed hypothesis and S = {(xi, yi)}mi=1 ⊂ (X × Y)

m
be arbitrary. Let

w0, w1, . . . , wm be the hypotheses generated by running the GD algorithm with stepsize η = B
λX
√
m

on S(given
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Algorithm 1 Constrained Gradient Descent (GD)

w0 ← ~0
for i=1,. . . ,m do

Receive xi, Predict 〈wi−1, x〉, Receive yi ∈ {−1,+1}, suffer loss l (wi−1; (xi, yi))
wi ←

∏
[wi−1 − η∇li(wi−1)]

end for

in any arbitrary order). Then we have:(∑
i

l(wi−1; (xi, yi))

)
≤

(∑
i

l(w∗; (xi, yi))

)
+ λXB

√
m

In particular this holds for w∗ = argminw∈H l(w;S), giving us the regret bound

Regret ≤ λBX
√
m

Proof. Define

αi =
1

2
‖wi−1 − w∗‖2 −

1

2
‖wi − w∗‖2

We know that ‖wi − w∗‖ ≤ ‖wi−1 − η∇li(wi−1)− w∗‖, since the projection operator brings wi−1−η∇li(wi−1)
uniformly closer to every element of H (specifically to w∗). Using this, we get

αi ≥
1

2
‖wi−1 − w∗‖2 −

1

2
‖wi−1 − η∇li(wi−1)− w∗‖

= −η
2

2
‖∇li(wi−1)‖2 − η 〈w∗ − wi−1,∇li(wi−1)〉

≥ −η
2

2
‖∇li(wi−1)‖2 + η(li(wi−1)− li(w∗)) (Since ∇li(wi−1) is a subgradient)

≥ −η
2λ2X2

2
+ η(li(wi−1)− li(w∗)) (Since l is λ-Lipschitz) (2)

Summing over i αi = 1
2 ‖wi−1 − w

∗‖2− 1
2 ‖wi − w

∗‖2, all terms except the last negative and the first positive
term cancel out, and we get∑

i

αi =
1

2
‖w0 − w∗‖2 −

1

2
‖wm − w∗‖2 ≤

1

2
‖w0 − w∗‖2 =

‖w∗‖2

2
≤ B2

2

since w0 = 0, ‖w∗‖ ≤ B. Using the lower bound (2), we get

∑
i

αi ≥ −m
η2λ2X2

2
+ η

(∑
i

l(wi−1; (xi, yi))− l(w∗; (xi, yi))

)
= −η

2λ2X2m

2
+ ηRegret

Comparing the lower bound to the upper bound and dividing by η, we get(∑
i

l(wi−1; (xi, yi))

)
−

(∑
i

l(w∗; (xi, yi))

)
≤ B2

2η
+
ηλ2X2m

2

We choose η = B
λX
√
m

to minimize the RHS, and get(∑
i

l(wi−1; (xi, yi))

)
≤

(∑
i

l(w∗; (xi, yi))

)
+ λXB

√
m
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Thus, we have a regret that grows sub-linearly with the number of samples observed. Asymptotically, this
gives us an average regret per sample (Regret

m ) that goes to 0 at rate 1√
m

.

2.2 Application to Statistical Learning

Theorem 2. Let H = {w ∈ Rn : ‖w‖2 ≤ B},X = {x ∈ Rn : ‖x‖2 ≤ X}. Let l be a convex λ-Lipschitz
loss function bounded in [0, c]. Let S ∼ Dm and let Q be the uniform distribution over hypotheses generated
by applying the GD algorithm to S (given in any arbitrary order). Let w∗ ∈ argminw∈H l(w;D). Then
w.p ≥ 1− δ over the sampling of S, the excess risk of Q is bounded as:

l (Q;D)− l(w∗;D) ≤ λXB√
m

+ 2c

√
log
(
2
δ

)
2m

Proof. Let S ∼ Dm. Then w.p ≥ 1− δ, we have (from (1))

l (Q;D) ≤ 1

m

(∑
i

l (wi−1; (xi, yi))

)
+ c

√
log
(
1
δ

)
2m

From theorem 1, we know that ∑
i

l (wi−1; (xi, yi)) ≤ ml(w∗;S) + λXB
√
m

Thus, we have w.p ≥ 1− δ

l (Q;D) ≤ l(w∗;S) +
λXB√
m

+ c

√
log
(
1
δ

)
2m

From the Hoeffding bound applied to l(w∗;S), we have w.p ≥ 1− δ

l(w∗;S) ≤ l(w∗;D) + c

√
log
(
1
δ

)
2m

Combining the above inequalities using the union bound, we get, w.p ≥ 1− 2δ

l (Q;D)− l(w∗;D) ≤ λXB√
m

+ 2c

√
log
(
1
δ

)
2m

Restating this, we get the following bound on the excess risk of the GD algorithm for supervised learning:
w.p ≥ 1− δ, we get

l (Q;D)− l(w∗;D) ≤ λXB√
m

+ 2c

√
log
(
2
δ

)
2m

(3)

2.3 Derandomization

We discuss various schemes to de-randomize Q and get a single hypothesis w with good generalization
properties:
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1 Mean: H is convex, so
∑m

i=1 wi

m = ExpQ [w] ∈ H. Since l is convex, using Jensen’s inequality, we get

l

(∑m
i=1 wi
m

;D
)
≤ l(Q;D)

Thus we can output the average as a derandomized single hypothesis.

2 Majority vote: The majority vote hypothesis is defined as:

hmaj(x) = sign

(∑m
i=1 sign (〈wi, x〉)

m

)
We know that the 0− 1 risk of the majority vote hypothesis is at most twice the 0− 1 risk of Q. Thus,
if l is a convex upper bound on the 0− 1 loss (like the hinge loss/exponential loss), we have

l0−1(hmaj(x);D) ≤ 2l0−1(Q;D) ≤ 2l(Q;D)

3 Dynamic Validation: Note that wi−1 is independent of {(xk, yk)}mk=i. Using a Hoeffding+Union
bound, w.p. at least 1− δ,

∀i |l (hi−1; {xk, yk}mk=i)− l (hi−1;D) | ≤ c

√
log (m/δ)

2(m− i+ 1)

Let

h̃ = argmin
{h0,h1,...,hm−1}

l (hi−1; {xk, yk}mk=i) + c

√
log (m/δ)

2(m− i+ 1)

Define
˜̃
h to be the output of ERM run on the first half of the dataset S′ = {(xi, yi}m/2−1i=1 . We know

that h̃ is at least as good as
˜̃
h. Let h∗ be the true risk minimizer among h0, . . . , hm/2−1. We know that

l(
˜̃
h;D) ≤ l(˜̃h;S′) + c

√
logm/δ

2(m/2)

with probability at least δ. Now, by definition l(
˜̃
h;S′) ≤ l(h∗;S′) and by a Hoeffding bound l(h∗;S′) ≤

l(h∗;D) + c
√

log(m/δ)
2(m/2) with probability at least 1− δ. Thus, with probability at least 1− 2δ

l(
˜̃
h;D) ≤ l(h∗;D) + 2c

√
log (m/δ)

m

so that with probability at least 1− δ,

l(h̃;D) ≤ l(h∗;D) + 2c

√
log (2m/δ)

m

3 Exponentiated Gradient (EG)

We now describe an alternate online learning algorithm that works in the “experts” setting: Here we assume
that we have a set of experts making each of whom predictions (possibly with some confidence) and the
algorithm tries to weight them outputs an optimal convex combination of the predictions that is as accurate
as possible. More concretely, Consider the class of linear predictors H = {w ∈ Rn : w ≥ 0

∑
i wi = 1} on the

input space X = {x ∈ Rn : ‖x‖∞ ≤ X}. Let l be a λ-Lipschtiz convex loss function. Let li(w) = l(w; (xi, yi))
and ∇li(w) denote a subgradient of li at w and ∇j li(w) denote its j-th component.

4



Algorithm 2 Exponentiated Gradient (EG)

w0 ← { 1n , . . . ,
1
n}

for i=1,. . . ,m do
Receive xi, Predict 〈wi−1, x〉, Receive yi ∈ {−1,+1}, suffer loss l (wi−1; (xi, yi))

Update: ∀j wi,j ← wi−1,j exp(−η∇j li(wi−1))∑
k wi−1,k exp(−η∇kli(wi−1))

end for

Theorem 3. Let w∗ ∈ H be any fixed hypothesis and S = {(xi, yi)}mi=1 ⊂ (X × Y)
m

be arbitrary. Let

w0, w1, . . . , wm ∈ H be the hypotheses generated by running the EG algorithm with stepsize η = 1
λX

√
2 log(n)
m

on S(given in any arbitrary order). Then we have:(∑
i

l(wi−1; (xi, yi))

)
≤

(∑
i

l(w∗; (xi, yi))

)
+ λX

√
2n log (m)

In particular this holds for w∗ = argminw∈H l(w;S), giving us the regret bound

Regret ≤ λX
√

2m log (n)

Proof. Each w ∈ H can be regarded as a probability distribution on {1, 2, . . . , n}. Define

αi = KL (w∗ ‖ wi−1)−KL (w∗ ‖ wi)

αi =

n∑
i=1

w∗j log

(
wi,j
wi−1,j

)
(Def of KL)

= −η
n∑
j=1

w∗j∇j li(wi−1)− log

 n∑
j=1

wi−1,j exp (−η∇j li(wi−1))

 (Def of EG Update)

= −η 〈w∗,∇li(wi−1)〉 − log

 n∑
j=1

wi−1,j exp (−η∇j li(wi−1))


= −η 〈w∗ − wi−1,∇li(wi−1)〉 − log

 n∑
j=1

wi−1,j exp (η(−∇j li(wi−1) + 〈wi−1,∇li(wi−1)〉))


≥ η (li(wi−1)− li(w∗))− log

(
Exp
wi−1

[exp (Z − Exp [Z])]

)
where Z is a discrete-valued random variable defined as

Z = −η∇j li(wi−1) w.p wi−1,j

Using the λ-Lipschitz property of l and the l∞ boundedness of X , one can show that |Z| ≤ ηλX w.p. 1.
Then, we have the following bound:

Exp [exp (Z − Exp [Z])] ≤ exp

(
η2λ2X2

2

)
Therefore,

αi ≥ η (li(wi−1)− li(w∗))−
η2λ2X2

2
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Also,∑
i

αi =
∑
i

KL (w∗ ‖ wi−1)−KL (w∗ ‖ wi) = KL (w∗ ‖ w0)−KL (w∗ ‖ wi) ≤ KL (w∗ ‖ w0) ≤ log (n)

Comparing the above bounds, we get

m∑
i=1

(li(wi−1)− li(w∗)) ≤
log (n)

η
+ η

mλ2X2

2

We can choose η = 1
λX

√
2 log(n)
m to minimize the RHS and get

m∑
i=1

(l(wi−1; (xi, yi))− l(w∗; (xi, yi))) ≤ λX
√

2m log (n)
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