CSE522, Winter 2011, Learning Theory

Lecture 18 - 03/03/2011

Sample compression schemes

Lecturer: Ofer Dekel

Scribe: Aniruddh Nath

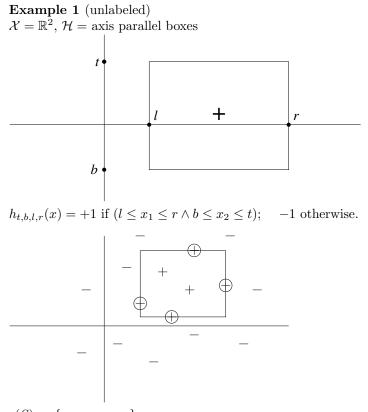
Definition 1. An unlabeled compression scheme of size k is defined by a pair of functions:

- Compression function $c: (x \times y)^m \to \mathcal{X}^{\leq k}$
- Reconstruction function: $r: \mathcal{X}^{\leq k} \to \mathcal{H}$

Definition 2. A labeled compression scheme of size k is defined by a pair of functions:

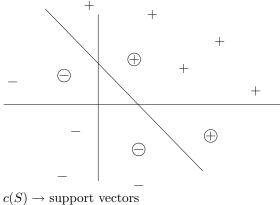
- Compression function $c: (x \times y)^m \to (x \times y)^{\leq k}$
- Reconstruction function: $r: (x \times y)^{\leq k} \to \mathcal{H}$

Definition 3. An algorithm A is called a sample compression algorithm if $\exists c, r \text{ such that } A(S) = r(c(S))$.



 $\begin{array}{l} c(S) \rightarrow \{x_l, x_r, x_t, x_b\} \\ r(x_l, x_r, x_t, x_b) \rightarrow \text{ smallest enclosing box } \end{array}$

Example 2 (labeled) Support vector machines:



 $r(c(S)) \rightarrow \text{max-margin hyperplane}$

Theorem 4. Consider a sample compression algorithm A of size k; $\ell \in [0, c]$.

$$\ell(A(S); \mathcal{D}) \le \frac{m}{m-k}\ell(A(S); S) + c\sqrt{\frac{\log \frac{1}{\delta} + k\log \frac{em}{k}}{2m}}$$

Proof. Let $I \subseteq \{1, \ldots, m\}$, with $|I| \leq k$. Let $h_I = r(S_I)$ where $S_I = \{(x_i, y_i)\}_{i \in I}$ **Note:** h_I is independent of $S_{\bar{I}}$, where $\bar{I} = \{1, \ldots, m\} \setminus I$

By Hoeffding,
$$\ell(h_I; \mathcal{D}) \le \ell(h_I; S_{\bar{I}}) + c \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$$
 (with probability $\ge 1 - \delta$) (1)

The number of candidate output hypotheses of A is:

$$\sum_{i=0}^{k} \binom{m}{i} \le \left(\frac{em}{k}\right)^{k}$$

Using union bound, equation 1 holds for all $|I| \le k$ uniformly with probability $\ge 1 - \delta \left(\frac{em}{k}\right)^k = 1 - \delta'$.

Therefore, with probability $\geq 1 - \delta', \ \forall |I| \leq k, \quad \ell(h_I; \mathcal{D}) \leq \ell(h_I; S_{\bar{I}}) + c \sqrt{\frac{\log \frac{1}{\delta'} + k \log \frac{em}{k}}{2m}}$ Note that $(m - k)\ell(h; S_{\bar{I}}) \leq m\ell(h; S)$. The theorem follows.

Definition 5. *Realizable case:* $\exists h \in \mathcal{H}$ with $\ell(h; \mathcal{D}) = 0$.

Assume: $\forall S, r(c(S))$ is consistent with S. In other words, if $S = \{(x_i, y_i)\}_{i=1}^m$ and h = r(c(S)), then $\forall i \ h(x_i) = y_i$.

Theorem 6. If ℓ is the error indicator,

$$\Pr\left(\ell(A(S);\mathcal{D}) > \varepsilon\right) \le \left(\frac{em}{k}\right)^k \cdot (1-\varepsilon)^{m-k} \le \left(\frac{em}{k}\right)^k \cdot e^{-\varepsilon(m-k)} \equiv \delta$$

$$\Leftrightarrow \quad with \ probability \ge 1-\delta, \quad \ell(A(S);\mathcal{D}) \le O\left(\frac{1}{m}\right)$$

Proof. Let I be a subset of $\{1, \ldots, m\}$

$$\Pr\left(\left(\ell(h_I; \mathcal{D}) > \varepsilon \land \ell(h_I; S_{\bar{I}}) = 0\right)\right) \le \Pr\left(\ell(H_I; S_{\bar{I}}) = 0 | \ell(h_I; \mathcal{D}) > \varepsilon\right)\right)$$
$$\le (1 - \varepsilon)^{|I|}$$
$$\le (1 - \varepsilon)^{m-k}$$

Using the union bound on $\sum_{i=0}^{k} {m \choose i}$ 'bad events', the theorem follows.

Conclusion: the size of the smallest compression scheme for $\mathcal{H}(r(c, S))$ is consistent with S) behaves like $VC(\mathcal{H})$, i.e. it measures the complexity of \mathcal{H} .

Connection to VC

Growth function:
$$g_H(m) = \max_{S \subseteq \mathcal{X}^m} |\{(h(x_1), \dots, h(x_m))\}_{h \in \mathcal{H}}|$$

Therefore, there are at most $g_H(|S|)$ ways to label S. We also assume that one of them is consistent with S (realizability). Sauer's lemma: $g_H(m) \leq \sum_{i=0}^d {m \choose i}$ where $d = VC(\mathcal{H})$.

The six hundred dollar question:

Is it true that $VC(H) = d \Rightarrow \exists$ an unlabeled compression scheme of size d? This statement is true for maximum classes. Class \mathcal{H} is a maximum class if Sauer's lemma holds with equality.

Connection to PAC-Bayes

Redefine the reconstruction function $r: \mathcal{X}^{\leq k} \times \mathcal{M} \to \mathcal{H}$, where \mathcal{M} is a set of **message strings**.

Case 1: $r(S_I, \sigma)$ ignores $\sigma \to$ back to original definition of compression schemes. Case 2: $r(S_I, \sigma)$ ignores $S_I \to$ back to standard statistical learning.

We decompose the prior $\Pr(I, \sigma) = \Pr(I) \Pr(\sigma|I)$

- If |I| = |I'|, the prior should not differentiate between them, i.e. $\Pr(I) = \frac{\Pr(|I|)}{\binom{m}{I}}$
- $\Pr(i) = 0$ for i > k.

Theorem 7. (c,r) is a compression scheme (with message) of size k, for any prior P (expressed as above). $\forall \mathcal{D}, \forall \delta > 0$, with probability $\leq 1 - \delta$ over $S \sim \mathcal{D}^m, \forall Q$ (posteriors),

$$KL(\ell(Q;S)||\ell(Q;\mathcal{D})) \le \frac{KL(Q||P) + \ln \frac{m+1}{\delta}}{m-k}$$