CSE522, Winter 2011, Learning Theory	Lecture 13-03/08/2011
Algorithmic Stability	
Lecturer: Ofer Dekel	

The goal of this lecture is to establish risk bounds that depend on the learning algorithm A instead of the hypothesis class \mathcal{H}. In particular, we would prove results that look like

With probability at least $1-\delta$ over the sample set $S \sim \mathcal{D}^{m}$,

$$
|\ell(A(S) ; \mathcal{D})-\ell(A(S) ; S)| \leq \epsilon
$$

i.e. we compare the performance of the same function, $A(S)$, on two different distributions, the uniform distribution on the sample set S and the real distribution \mathcal{D}. Contrast this to the approach we took in the Rademacher and VC theory, where we compared the performance of two functions, the output of the algorithm $A(S)$ and the best hypothesis h^{*}, on the same distribution \mathcal{D}.

Notice two simple facts. First, $A(S)$ is a random variable, with the randomness comes from S. Second, $A(S)$ depends on S, so we cannot use Hoefding's inequality to compare $\ell(A(S) ; \mathcal{D})$ and $\ell(A(S) ; S)$.

1 Uniform stability

Before getting to the formal definitions, we introduce some notations

- $S^{i}=S \backslash\left\{\left(x_{i}, y_{i}\right)\right\}$, i.e. the set of $m-1$ samples where the i th sample is removed.
- $S^{i}=S^{\backslash} \cup\left\{\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right\}$ for some worst $\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$.

Definition 1 (Uniform stabiliy). Algorithm A has uniform stability β with respect to a loss function ℓ if for all S and all $i \in[m]$,

$$
\max _{x, y}\left|\ell(A(S) ;(x, y))-\ell\left(A\left(S^{\backslash i}\right) ;(x, y)\right)\right| \leq \beta
$$

i.e. the algorithm is "stable" with respect to removing a single sample at all points.

Note that β depends on m and we would want β_{m} to be around $\frac{1}{m}$.
Remark 1. There are weaker notions of stability such as

- Error stability: For all S, for all $i \in[m]:\left|\ell(A(S) ; \mathcal{D})-\ell\left(A\left(S^{\backslash i}\right) ; \mathcal{D}\right)\right| \leq \beta$, i.e. the average difference is small. This is a very week notion of stability.
- Hypothesis stability: For all $i \in[m], \mathbf{E}_{S,(x, y)}\left[\left|\ell(A(S) ;(x, y))-\ell\left(A\left(S^{\backslash i}\right) ;(x, y)\right)\right|\right] \leq \beta$

Remark 2. By triangle inequality, uniform stability β implies that for S, for all $i \in[m]$

$$
\max _{x, y}\left|\ell(A(S) ;(x, y))-\ell\left(A\left(S^{i}\right) ;(x, y)\right)\right| \leq 2 \beta
$$

Now we show that uniform stability implies a bound in the form stated in the first paragraph.
Theorem 2. Suppose that $\ell \in[0, C]$ and A has uniform stability β. Furthermore, suppose that A is anonymous, i.e. $A(S)=A\left(S^{\prime}\right)$ if S and S^{\prime} contains the same elements (but in different orders). Let Z be the random variable defined by $Z=\ell(A(S) ; \mathcal{D})-\ell(A(S) ; S)$. Then w.p. at least $1-\delta$,

$$
Z \leq 2 \beta+m(4 \beta+C / m) \sqrt{\frac{\log (1 / \delta)}{2 m}}
$$

Proof. We will show that Z is concentrated, and then show that $\mathbf{E}[Z]$ is small. For the first part, note that by triangle inequality:

$$
\left|\ell(A(S) ; \mathcal{D})-\ell\left(A\left(S^{i}\right) ; \mathcal{D}\right)\right| \leq\left|\ell(A(S) ; \mathcal{D})-\ell\left(A\left(S^{\backslash i}\right) ; \mathcal{D}\right)\right|+\left|\ell\left(A\left(S^{i} ; \mathcal{D}\right)-\ell\left(A\left(S^{i}\right) ; \mathcal{D}\right)\right)\right| \leq 2 \beta
$$

Also:

$$
\begin{aligned}
\left|\ell(A(S) ; S)-\ell\left(A\left(S^{i}\right) ; S^{i}\right)\right| \leq & \frac{1}{m} \sum_{j \neq i}\left|\ell\left(A(S) ;\left(x_{j}, y_{j}\right)\right)-\ell\left((; A)\left(S^{i}\right) ;\left(x_{j}, y_{j}\right)\right)\right| \\
& +\frac{1}{m}\left|\ell\left(A(S) ;\left(x_{i}, y_{i}\right)\right)-\ell\left(A\left(S^{i}\right) ;\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right)\right| \\
\leq & \frac{m-1}{m} 2 \beta+\frac{C}{m} \leq 2 \beta+\frac{C}{m}
\end{aligned}
$$

Hence, $\left|Z-Z^{i}\right| \leq 4 \beta+\frac{C}{m}$ where Z^{i} denotes the random variable where S is replaced by S^{i}. This implies that $\max _{S} Z-\min _{S} Z \leq m(4 \beta+C / m)$; therefore $Z \leq \mathbf{E}[Z]+m(4 \beta+C / m)$.

To bound $\mathbf{E}[Z]$, we will need some identities

- $\mathbf{E}_{S}\left[\ell\left(A(S) ;\left(x_{j}, y_{j}\right)\right)\right]=\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A\left(S^{j}\right) ;\left(x^{\prime}, y^{\prime}\right)\right)\right]$. This identity holds because for $\left(x^{\prime}, y^{\prime}\right)$ drawn from $\mathcal{D}, \operatorname{Pr}[S]=\operatorname{Pr}\left[S^{j}\right]$.
- $\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A\left(S^{j}\right) ;\left(x^{\prime}, y^{\prime}\right)\right)\right]=\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A\left(S^{i}\right) ;\left(x^{\prime}, y^{\prime}\right)\right)\right]$. To see that this identity holds, let S^{\prime} be the set that contains the same elements as S but with $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ exchange their order. Then since A is anonymous, $A(S)=A\left(S^{\prime}\right)$. The identity then forllow from the fact that $\operatorname{Pr}[S]=\operatorname{Pr}\left[S^{\prime}\right]$ and the previous identity.

With these identities, we have:

$$
\begin{aligned}
\mathbf{E}[Z] & =\mathbf{E}_{S}[\ell(A(S) ; \mathcal{D})-\ell(A(S) ; S)] \\
& =\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A(S) ;\left(x^{\prime}, y^{\prime}\right)\right)\right]-\mathbf{E}_{S}[\ell(A(S) ; S)] \\
& =\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A(S) ;\left(x^{\prime}, y^{\prime}\right)\right)\right]-\mathbf{E}_{S}\left[\frac{1}{m} \sum_{j=1}^{m} \ell\left(A(S) ;\left(x_{j}, y_{j}\right)\right)\right] \\
& =\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A(S) ;\left(x^{\prime}, y^{\prime}\right)\right)\right]-\frac{1}{m} \sum_{j=1}^{m} \mathbf{E}_{S}\left[\ell\left(A(S) ;\left(x_{j}, y_{j}\right)\right)\right] \\
& =\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A(S) ;\left(x^{\prime}, y^{\prime}\right)\right)\right]-\frac{1}{m} \sum_{j=1}^{m} \mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A\left(S^{j}\right) ;\left(x^{\prime}, y^{\prime}\right)\right)\right] \\
& =\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A(S) ;\left(x^{\prime}, y^{\prime}\right)\right)\right]-\frac{1}{m} m \mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A\left(S^{i}\right) ;\left(x^{\prime}, y^{\prime}\right)\right)\right] \\
& =\mathbf{E}_{S,\left(x^{\prime}, y^{\prime}\right)}\left[\ell\left(A(S) ;\left(x^{\prime}, y^{\prime}\right)\right)-\ell\left(A\left(S^{i}\right) ;\left(x^{\prime}, y^{\prime}\right)\right)\right] \\
& \leq 2 \beta
\end{aligned}
$$

Now, by McDiamid's inequality, we have that with probability at least $1-\delta$,

$$
Z \leq \mathbf{E}[Z]+m(4 \beta+c / m) \sqrt{\frac{\log (1 / \delta)}{m}} \leq 2 \beta+m(4 \beta+c / m) \sqrt{\frac{\log (1 / \delta)}{m}}
$$

The implication of this theorem is that if A is uniformly stable and has good empirical risk, we have good bound on A 's risk even if the hypothesis class \mathcal{H} is bad.

2 Regularized ERM

We give an example algorithm that has uniform stability. Consider the case where $y \in\{-1,1\}$, is convex and differentiable. For simplicity, assume that $\ell(h ;(x, y))=\ell(y h(x))$, so ℓ is λ-lipschitz. (log loss is a nice loss here; hinge loss is not differentiable, but there's a fix for that.) The algorithm we will use is Regularized ERM, which outputs the hypothesis that minimize the following quantity:

$$
R(h)=\ell(h ; S)+c \psi(h)
$$

where $\psi(h)$ is some convex and differentiable function from \mathcal{H} to \mathbb{R} and c is some constant.
Consider the following quantities

- $\bar{h}=\operatorname{argmin}_{h} R(h)$
- $R^{\backslash i}(h)=\ell\left(h ; S^{\backslash i}\right)+c \psi(h)$
- $\bar{h}^{i}=\operatorname{argmin}_{h} R^{\backslash i}(h)$

Note that $\bar{h}^{\backslash i}$ is the output of the algorithm on $S^{\backslash i}$. Therefore $\beta=\max _{x, y}\left|\ell(\bar{h} ;(x, y))-\ell\left(\bar{h}^{\backslash i} ;(x, y)\right)\right|$ is exactly the quantity we want to bound. We have:

$$
\begin{equation*}
\beta=\max _{x, y}\left|\ell(\bar{h} ;(x, y))-\ell\left(\bar{h}^{\backslash i} ;(x, y)\right)\right| \leq \max _{x, y} \lambda\left|y \bar{h}(x)-y \bar{h}^{\backslash i}(x)\right|=\max _{x} \lambda\left|\bar{h}(x)-\bar{h}^{\backslash i}(x)\right| . \tag{1}
\end{equation*}
$$

Now we consider a concrete hypothesis class $\mathcal{H}=\left\{w \in \mathbb{R}^{n}\right\}$ and domain $\mathcal{X}=\left\{x \in R^{n}:\|x\| \leq X\right\}$. Let $\psi(w)=\|w\|^{2}$.

To prove a concrete bound on β, we will use the Bregman divergence defined as follows.
Definition 3. The Bregman divergence of a function f is defined by $B_{f}\left(v^{\prime} \| v\right)=f\left(v^{\prime}\right)-f(v)-\left\langle v^{\prime}-v, \nabla f(v)\right\rangle$.
Lemma 4. If f is convex then $B_{f} \geq 0$.
Lemma 5. $c B_{\psi}\left(\bar{h}^{\backslash i} \| \bar{h}\right)+c B_{\psi}\left(\bar{h} \| \bar{h}^{\backslash i}\right) \leq \frac{2 \lambda}{m} \max _{x}\left|\bar{h}^{\backslash i}(x)-\bar{h}(x)\right|$.
Proof. We have:

$$
\begin{aligned}
c B_{\psi}\left(\bar{h}^{\backslash i} \| \bar{h}\right)+c B_{\psi}\left(\bar{h} \| \bar{h}^{\backslash i}\right) & \leq c B_{R}\left(\bar{h}^{\backslash i} \| \bar{h}\right)+c B_{R \backslash i}\left(\bar{h} \| \bar{h}^{\backslash i}\right) \\
& =R\left(\bar{h}^{\backslash i}\right)-R(\bar{h})+R^{\backslash i}(\bar{h})-R^{\backslash i}\left(\bar{h}^{\backslash i}\right) \\
& =\frac{1}{m}\left(\ell\left(\bar{h}^{\backslash i} ;\left(x_{i}, y_{i}\right)\right)-\ell\left(\bar{h} ;\left(x_{i}, y_{i}\right)\right)\right)+\frac{1}{m(m-1)} \sum_{j \neq i}\left(\ell\left(\bar{h} ;\left(x_{j}, y_{j}\right)\right)-\ell\left(\bar{h}^{\backslash i} ;\left(x_{j}, y_{j}\right)\right)\right) \\
& \leq \frac{\lambda}{m}\left|\bar{h}^{\backslash i}\left(x_{i}\right)-\bar{h}\left(x_{i}\right)\right|+\frac{\lambda}{m(m-1)} \sum_{j \neq i}\left|\bar{h}\left(x_{j}\right)-\bar{h}^{\backslash i}\left(x_{j}\right)\right| \\
& \leq \frac{\lambda}{m} \max _{x}\left|\bar{h}^{\backslash i}(x)-\bar{h}(x)\right|+\frac{\lambda}{m(m-1)}(m-1) \max _{x}\left|\bar{h}(x)-\bar{h}^{\backslash i}(x)\right| \\
& \leq \frac{2 \lambda}{m} \max _{x}\left|\bar{h}(x)-\bar{h}^{\backslash i}(x)\right|
\end{aligned}
$$

where the first inequality forllows from the facts that $B_{f+g}=B_{f}+B_{g}$, that ℓ is convex and Lemma 4.
Now note that for our definition of $\psi, B_{\psi}\left(w \| w^{\prime}\right)=\left\|w-w^{\prime}\right\|^{2}$ is symmetric. Thus, the lemma implies

$$
2 c\left\|\bar{w}^{\backslash i}-\bar{w}\right\|^{2} \leq \frac{2 \lambda}{m}\left|\bar{h}^{\backslash i}\left(x_{i}\right)-\bar{h}\left(x_{i}\right)\right| \leq \frac{2 \lambda}{m} X\left\|\bar{w}^{\backslash i}-\bar{w}\right\|
$$

Hence, we have

$$
\left\|\bar{w}^{\backslash i}-\bar{w}\right\| \leq \frac{\lambda X}{m c}
$$

By (1), we have

$$
\begin{equation*}
\beta \leq \max _{x} \lambda\left|\bar{h}(x)-\bar{h}^{\backslash i}(x)\right| \leq \lambda X\left\|\bar{w}-\bar{w}^{\backslash i}\right\| \leq \lambda X \cdot \frac{\lambda X}{m c}=\frac{\lambda^{2} X^{2}}{m c}=O\left(\frac{1}{m}\right) \tag{2}
\end{equation*}
$$

This shows that the regularized ERM algorithm has uniform convergence for this setting. Choosing an appropriate c so as to make sure that the algorithm still has good empirical loss yields a good bound on its risk.

