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1 Some inequalities

Chebyshev’s inequality: Let Z be a random variable with expected value µ and variance σ2 <∞. Then
∀ ε > 0, we have Pr(|Z − µ| ≥ ε) ≤ σ2/ε2.

Proof. Let X = (Z − µ)2 ≥ 0, then E(X) = E[(Z − µ)2] = σ2. And from Markov’s inequality we have

P (X ≥ ε2) = P ((Z − µ)2 ≥ ε2) = P (|Z − µ| ≥ ε) ≤ E(X)/ε2 =
σ2

ε2
(1)

Hoeffding’s inequality: Let Z1 . . . Zm are independent random variables. Assume that the Zi are almost
surely bounded: Pr(Zi ∈ [a, b]) = 1 where b−a = c. Then, for the average of these variables Z = 1

m

∑m
i=1 Zi,

we have P (Z − E(Z) ≥ ε) ≤ exp(− 2ε2

c2 ) for any ε > 0.

Proof. Without loss of generality we assume E(Z) = 0 and c = 1 (or we can just let Z ′ = Z−E(Z)
c ). Then

from Markov’s inequality we have

Pr(Z ≥ ε) = Pr(e4mεZ ≥ e4mε
2

) ≤ E[e4mεZ ]

e4mε2

=
E[

∏
i e

4εZi ]

e4mε2
=

∏
iE[e4εZi ]

e4mε2
(Second equality holds only when Zis are independent)

≤
∏
i e

2ε2

e4mε2
(Using Jensen’s inequality)

= exp(−2mε2) (2)

McDiarmid’s Inequality: Suppose Z1, . . . , Zm are independent, the vector Z = {Z1, Z2, . . . , Zm} and
assume that f satisfies

sup
z1,...,zm,z′i

|f(z1, . . . , zm)− f(z1, . . . , zi−1, z
′
izi+1, . . . , zm)| ≤ d

m
. (3)

for any 1 ≤ i ≤ m. In other words, replace the i-th coordinate xi by some other value changes the value of
f by at most d/m. Then f has the d

m -bounded property and satisfies the following inequality

Pr(f(Z)− E[f(Z)] ≥ ε) ≤ exp(−2mε2

d2
) (4)

for any ε > 0.

1



2 Generalization Bounds for finite hypothesis space

2.1 Chernoff bound for a fixed hypothesis

In the context of machine learning theory, let a sample set S = Z, each Zi = l(h; (xi, yi)), and f(Z) =
1
m

∑m
i=1 l(h; (xi, yi)) = l(h;S). For a fixed hypothesis h, a loss function l ∈ [0, c] and ε > 0, we then have

Pr(|l(h;D)− l(h;S)| ≥ ε) ≤ 2 exp(− 2mε2

c2 ), where D denotes the distribution of the examples (x, y) and S is

a sample set drawn from D with size m. Let δ = exp(− 2mε2

c2 ). Then with probability at least 1− δ, we have

|l(h;D)− l(h;S)| ≤ c
√

log(2/δ)
2m .

The above inequality says that for each hypothesis h ∈ H, there exists a set S of samples that satisfies the

bound c
√

2/δ
2m with probability at least 1−δ. However, these sets may be different for different hypotheses. For

a fixed observed sample S∗, this inequality may not hold for all hypotheses in H including the hypothesis
hERM = arg minh∈H l(h;S∗) with minimum empirical risk. Only some hypotheses in H (not necessarily
hERM ) will satisfy this inequality.

2.2 Uniform bound

To overcome the above limitation, we need to derive a uniform bound for all hypotheses in H. As shown
in Fig 1, we define the set Ωi = {S ∼ D : |l(hi;D)− l(hi;S)| > ε} be the set contains all “bad” samples for

which the bound fails. For each i, Pr(Ωi) ≤ δ. If |H| = k, we can write Pr(Ω1 ∪ . . . ∪ Ωk) ≤
∑k
i=1 Pr(Ωi).

As a result, we obtain the uniform bound:

P (∀h ∈ H : l(h;D)− l(h;S) ≤ ε) ≤ 1−
∑
i

P (|l(hi;D − l(hi,S)| > ε)|

= 1− 2k exp(−2mε2

c2
). (5)

Finally we have the theorem for a uniform bound

Figure 1: Set diagram for Ωi and the ε uniformly good set of samples.

Theorem 1. If the size of the hypothesis space |H| = k, the loss function l ∈ [0, c], and S is the sample set
drawn from distribution D with |S| = m. Then ∀δ > 0 and ∀h ∈ H, with probability at least 1− δ,

|l(h;D − l(h;S)| ≤ c
√

log(2/δ) + log(k)

2m
(6)
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2.3 Excess Risk

Define the excess risk for any hypothesis h ∈ H be l(h;D) − minh∈H l(h;D). From Theorem 1 we have

l(hERM ;D) ≤ minh∈H l(h;D) + 2ε , as shown in Fig 2, where ε = c
√

log(2/δ)+log(k)
2m .

Figure 2: The empirical risk l(hi;S) and the range for the true risk l(hi;D). The difference between
l(hERM ;D) and l(h∗;D) is at most 2ε where h∗ = arg minh∈H l(h;D)

2.4 Estimation VS Approximation

First we define the Bayesian risk minall possible h l(h;D) and the Bayesian hypothesis arg min l(h;D), a hy-
pothesis that attains the Bayesian risk. Sometimes some errors may be inevitable, the Bayesian risk may be
strictly positive.

Take the binary classification task for example, where y ∈ {−1, 1} be the lab, and the loss function is
zero-one l(h; (x, y)) = 1h(x)6=y. The risk for h can be written as:

E[1h)x6=y] = Ex[E[1h(x)6=y|X = x]] (7)

where [E[1h(x)6=y|X = x] = Pr(h(x) 6= y|X = x)

=

{
Pr(Y = −1|X = x) if h(x) = +1

Pr(Y = +1|X = x) if h(x) = −1

We have the Bayesian hypothesis that minimizes the above risk

hBayes =

{
+1 if Pr(y = 1|x = x) > 0.5

−1 otherwise
(8)

if we know the distribution D = Pr(Y |X)Pr(X).
For a hypothesis space H, we define the approximation error as l(h∗,D)− l(hBayes,D) and the estimation

error as l(hERM ;D)− l(h∗;D) where h∗ = arg minh∈H l(h;D).
We observe that as the size of hypothesis space k = |H| increases, the approximation error may decreases

while the estimation error will increase. Consider the following two scenarios demonstrated in Fig 3,

• Scenario 1: k = 1010, hERM = arg minh∈H l(h;S). Then with probability at least 1−δ, from the excess
risk theorem we have

l(hERM ,D) ≤ min
h∈H

l(h,D) + 2c

√
2 log(2/δ) + log(1010)

2m

.
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Figure 3: The approximation errors are shown in solid arrows pointing from the Bayesian hypothesis hBayes
to h∗i , where h∗i = arg minhi∈Hi

l(hi;D). The estimation errors are shown in dotted arrows pointing from h∗i
to hERM . Suppose hERM ∈ H1 ∩ H2 and |H2| << |H1|. The figure demonstrates the effect of the size of
hypothesis space on the approximation error and the estimation error.

• Scenario 2: k = 3, H = {hERM , h1, h2}. Now we have

l(hERM ,D) ≤ min
h∈H

l(h,D) + 2c

√
2 log(2/δ) + log(3)

2m

3 Generalization Bound for infinite hypothesis space

Theorem 2. If the size of the hypothesis space is infinite, |H| = ∞, the loss function l ∈ [0, c], and S is
the sample set drawn from distribution D with |S| = m. Then ∀δ > 0 and ∀h ∈ H, with probability at least
1− δ,

|l(h;S)− l(h;D)| ≤ ε(δ) (9)

Proof. To apply Hoeffding’s inequality 2, we define f(S) = maxh∈H[l(h;D − l(h;S)].
First we show that f(S) is c

m bounded. ∀h, we change one example in S → S ′. l ∈ [0, c], thus
|l(h,S ′)− l(h,S| ≤ c

m . l(h,D) remains the same, we have |f(S)− f(S;)| ≤ c
m .

Next we apply McDiarmid’s inequality,

Pr(|f(S)− E[f(S)]| ≥ ε) ≤ 2 exp(−2mε2

c2
) = δ

f(s) ≤ E[f(S)] + c
√

log(2/δ)/2m

where E[f(S)] = ES{maxh∈H[l(h;D − l(h;S)]}. The expectation is taken over all possible samples.
Third, we show that maxi∈I E(Xi) ≤ E(maxi∈I Xi). For ∀j ∈ I, xj ≤ maxxi. Then E(Xj) ≤

E(maxiXi). Finally we have maxj E(Xj) ≤ E(maxiXi). Using this lemma, we can show

ES [f(S)] = ES [max
h

[l(h;D)− l(h;S)]]

= ES [max
h

[ES′ − l(h;S)]]

≤ ESES′ [max
h

(l(h;S ′ − l(h;S))] (10)
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