CSE522, Winter 2011, Learning Theory

Lecture 4 - 01/16/2011

Estimation VS Approximation

Lecturer: Ofer Dekel

Scribe: Yanping Huang

1 Some inequalities

Chebyshev's inequality: Let Z be a random variable with expected value μ and variance $\sigma^2 < \infty$. Then $\forall \epsilon > 0$, we have $Pr(|Z - \mu| \ge \epsilon) \le \sigma^2/\epsilon^2$.

Proof. Let $X = (Z - \mu)^2 \ge 0$, then $E(X) = E[(Z - \mu)^2] = \sigma^2$. And from Markov's inequality we have

$$P(X \ge \epsilon^2) = P((Z - \mu)^2 \ge \epsilon^2) = P(|Z - \mu| \ge \epsilon) \le E(X)/\epsilon^2 = \frac{\sigma^2}{\epsilon^2}$$
(1)

Hoeffding's inequality: Let $Z_1
dots Z_m$ are independent random variables. Assume that the Z_i are almost surely bounded: $Pr(Z_i \in [a, b]) = 1$ where b - a = c. Then, for the average of these variables $Z = \frac{1}{m} \sum_{i=1}^{m} Z_i$, we have $P(Z - E(Z) \ge \epsilon) \le \exp(-\frac{2\epsilon^2}{c^2})$ for any $\epsilon > 0$.

Proof. Without loss of generality we assume E(Z) = 0 and c = 1 (or we can just let $Z' = \frac{Z - E(Z)}{c}$). Then from Markov's inequality we have

$$Pr(Z \ge \epsilon) = Pr(e^{4m\epsilon Z} \ge e^{4m\epsilon^2}) \le \frac{E[e^{4m\epsilon Z}]}{e^{4m\epsilon^2}}$$

$$= \frac{E[\prod_i e^{4\epsilon Z_i}]}{e^{4m\epsilon^2}} = \frac{\prod_i E[e^{4\epsilon Z_i}]}{e^{4m\epsilon^2}} \quad (\text{Second equality holds only when } Z_i \text{s are independent})$$

$$\le \frac{\prod_i e^{2\epsilon^2}}{e^{4m\epsilon^2}} \quad (\text{Using Jensen's inequality})$$

$$= \exp(-2m\epsilon^2) \tag{2}$$

McDiarmid's Inequality: Suppose Z_1, \ldots, Z_m are independent, the vector $Z = \{Z_1, Z_2, \ldots, Z_m\}$ and assume that f satisfies

$$\sup_{z_1,\dots,z_m,z'_i} |f(z_1,\dots,z_m) - f(z_1,\dots,z_{i-1},z'_i z_{i+1},\dots,z_m)| \le \frac{d}{m}.$$
(3)

for any $1 \le i \le m$. In other words, replace the *i*-th coordinate x_i by some other value changes the value of f by at most d/m. Then f has the $\frac{d}{m}$ -bounded property and satisfies the following inequality

$$Pr(f(Z) - E[f(Z)] \ge \epsilon) \le \exp(-\frac{2m\epsilon^2}{d^2})$$
(4)

for any $\epsilon > 0$.

2 Generalization Bounds for finite hypothesis space

2.1 Chernoff bound for a fixed hypothesis

In the context of machine learning theory, let a sample set S = Z, each $Z_i = l(h; (x_i, y_i))$, and $f(Z) = \frac{1}{m} \sum_{i=1}^{m} l(h; (x_i, y_i)) = l(h; S)$. For a fixed hypothesis h, a loss function $l \in [0, c]$ and $\epsilon > 0$, we then have $Pr(|l(h; \mathcal{D}) - l(h; S)| \ge \epsilon) \le 2 \exp(-\frac{2m\epsilon^2}{c^2})$, where \mathcal{D} denotes the distribution of the examples (x, y) and S is a sample set drawn from \mathcal{D} with size m. Let $\delta = \exp(-\frac{2m\epsilon^2}{c^2})$. Then with probability at least $1 - \delta$, we have $|l(h; \mathcal{D}) - l(h; S)| \le c\sqrt{\frac{\log(2/\delta)}{2m}}$. The above inequality says that for each hypothesis $h \in \mathcal{H}$, there exists a set S of samples that satisfies the

The above inequality says that for each hypothesis $h \in \mathcal{H}$, there exists a set S of samples that satisfies the bound $c\sqrt{\frac{2/\delta}{2m}}$ with probability at least $1-\delta$. However, these sets may be different for different hypotheses. For a fixed observed sample S^* , this inequality may not hold for all hypotheses in \mathcal{H} including the hypothesis $h_{ERM} = \arg \min_{h \in \mathcal{H}} l(h; S^*)$ with minimum empirical risk. Only some hypotheses in \mathcal{H} (not necessarily h_{ERM}) will satisfy this inequality.

2.2 Uniform bound

To overcome the above limitation, we need to derive a *uniform* bound for all hypotheses in \mathcal{H} . As shown in Fig 1, we define the set $\Omega_i = \{\mathcal{S} \sim \mathcal{D} : |l(h_i; \mathcal{D}) - l(h_i; \mathcal{S})| > \epsilon\}$ be the set contains all "bad" samples for which the bound fails. For each i, $Pr(\Omega_i) \leq \delta$. If $|\mathcal{H}| = k$, we can write $Pr(\Omega_1 \cup \ldots \cup \Omega_k) \leq \sum_{i=1}^k Pr(\Omega_i)$. As a result, we obtain the uniform bound:

$$P(\forall h \in \mathcal{H} : l(h; \mathcal{D}) - l(h; \mathcal{S}) \le \epsilon) \le 1 - \sum_{i} P(|l(h_i; \mathcal{D} - l(h_i, \mathcal{S})| > \epsilon)|$$
$$= 1 - 2k \exp(-\frac{2m\epsilon^2}{c^2}).$$
(5)

Finally we have the theorem for a uniform bound

Figure 1: Set diagram for Ω_i and the ϵ uniformly good set of samples.

Theorem 1. If the size of the hypothesis space $|\mathcal{H}| = k$, the loss function $l \in [0, c]$, and S is the sample set drawn from distribution \mathcal{D} with |S| = m. Then $\forall \delta > 0$ and $\forall h \in \mathcal{H}$, with probability at least $1 - \delta$,

$$|l(h; \mathcal{D} - l(h; \mathcal{S})| \le c\sqrt{\frac{\log(2/\delta) + \log(k)}{2m}}$$
(6)

2.3 Excess Risk

Define the excess risk for any hypothesis $h \in \mathcal{H}$ be $l(h; \mathcal{D}) - \min_{h \in \mathcal{H}} l(h; \mathcal{D})$. From Theorem 1 we have $l(h_{ERM}; \mathcal{D}) \leq \min_{h \in \mathcal{H}} l(h; \mathcal{D}) + 2\epsilon$, as shown in Fig 2, where $\epsilon = c\sqrt{\frac{\log(2/\delta) + \log(k)}{2m}}$.

Figure 2: The empirical risk $l(h_i; S)$ and the range for the true risk $l(h_i; D)$. The difference between $l(h_{ERM}; D)$ and $l(h^*; D)$ is at most 2ϵ where $h^* = \arg \min_{h \in \mathcal{H}} l(h; D)$

2.4 Estimation VS Approximation

First we define the Bayesian risk min_{all possible h} l(h; D) and the Bayesian hypothesis arg min l(h; D), a hypothesis that attains the Bayesian risk. Sometimes some errors may be inevitable, the Bayesian risk may be strictly positive.

Take the binary classification task for example, where $y \in \{-1, 1\}$ be the lab, and the loss function is zero-one $l(h; (x, y)) = \mathbf{1}_{h(x) \neq y}$. The risk for h can be written as:

$$E[\mathbf{1}_{h)x\neq y}] = E_x[E[\mathbf{1}_{h(x)\neq y}|X=x]]$$
(7)
where $[E[\mathbf{1}_{h(x)\neq y}|X=x] = Pr(h(x)\neq y|X=x)$

$$= \begin{cases} Pr(Y=-1|X=x) & \text{if } h(x)=+1\\ Pr(Y=+1|X=x) & \text{if } h(x)=-1 \end{cases}$$

We have the Bayesian hypothesis that minimizes the above risk

$$h_{Bayes} = \begin{cases} +1 & \text{if } Pr(y=1|x=x) > 0.5\\ -1 & \text{otherwise} \end{cases}$$
(8)

if we know the distribution $\mathcal{D} = Pr(Y|X)Pr(X)$.

For a hypothesis space \mathcal{H} , we define the approximation error as $l(h^*, \mathcal{D}) - l(h_{Bayes}, \mathcal{D})$ and the estimation error as $l(h_{ERM}; \mathcal{D}) - l(h^*; \mathcal{D})$ where $h^* = \arg \min_{h \in \mathcal{H}} l(h; \mathcal{D})$.

We observe that as the size of hypothesis space $k = |\mathcal{H}|$ increases, the approximation error may decreases while the estimation error will increase. Consider the following two scenarios demonstrated in Fig 3,

• Scenario 1: $k = 10^{10}$, $h_{ERM} = \arg \min_{h \in \mathcal{H}} l(h; S)$. Then with probability at least $1 - \delta$, from the excess risk theorem we have

$$l(h_{ERM}, \mathcal{D}) \le \min_{h \in \mathcal{H}} l(h, \mathcal{D}) + 2c\sqrt{\frac{2\log(2/\delta) + \log(10^{10})}{2m}}$$

Figure 3: The approximation errors are shown in solid arrows pointing from the Bayesian hypothesis h_{Bayes} to h_i^* , where $h_i^* = \arg \min_{h_i \in \mathcal{H}_i} l(h_i; \mathcal{D})$. The estimation errors are shown in dotted arrows pointing from h_i^* to h_{ERM} . Suppose $h_{ERM} \in \mathcal{H}_1 \cap \mathcal{H}_2$ and $|\mathcal{H}_2| << |\mathcal{H}_1|$. The figure demonstrates the effect of the size of hypothesis space on the approximation error and the estimation error.

• Scenario 2: k = 3, $\mathcal{H} = \{h_{ERM}, h_1, h_2\}$. Now we have

$$l(h_{ERM}, \mathcal{D}) \le \min_{h \in \mathcal{H}} l(h, \mathcal{D}) + 2c\sqrt{\frac{2\log(2/\delta) + \log(3)}{2m}}$$

3 Generalization Bound for infinite hypothesis space

Theorem 2. If the size of the hypothesis space is infinite, $|\mathcal{H}| = \infty$, the loss function $l \in [0, c]$, and S is the sample set drawn from distribution \mathcal{D} with |S| = m. Then $\forall \delta > 0$ and $\forall h \in \mathcal{H}$, with probability at least $1 - \delta$,

$$|l(h;\mathcal{S}) - l(h;\mathcal{D})| \le \epsilon(\delta) \tag{9}$$

Proof. To apply Hoeffding's inequality 2, we define $f(S) = \max_{h \in \mathcal{H}} [l(h; \mathcal{D} - l(h; \mathcal{S})]]$.

First we show that f(S) is $\frac{c}{m}$ bounded. $\forall h$, we change one example in $S \to S'$. $l \in [0, c]$, thus $|l(h, S') - l(h, S)| \leq \frac{c}{m}$. l(h, D) remains the same, we have $|f(S) - f(S;)| \leq \frac{c}{m}$.

Next we apply McDiarmid's inequality,

$$Pr(|f(\mathcal{S}) - E[f(\mathcal{S})]| \ge \epsilon) \le 2\exp(-\frac{2m\epsilon^2}{c^2}) = \delta$$
$$f(s) \le E[f(\mathcal{S})] + c\sqrt{\log(2/\delta)/2m}$$

where $E[f(\mathcal{S})] = E_{\mathcal{S}}\{\max_{h \in \mathcal{H}}[l(h; \mathcal{D} - l(h; \mathcal{S}))]\}$. The expectation is taken over all possible samples.

Third, we show that $\max_{i \in \mathcal{I}} E(X_i) \leq E(\max_{i \in \mathcal{I}} X_i)$. For $\forall j \in \mathcal{I}, x_j \leq \max x_i$. Then $E(X_j) \leq E(\max_i X_i)$. Finally we have $\max_j E(X_j) \leq E(\max_i X_i)$. Using this lemma, we can show

$$E_{\mathcal{S}}[f(\mathcal{S})] = E_{\mathcal{S}}[\max_{h}[l(h;\mathcal{D}) - l(h;\mathcal{S})]]$$

$$= E_{\mathcal{S}}[\max_{h}[E_{\mathcal{S}'} - l(h;\mathcal{S})]]$$

$$\leq E_{\mathcal{S}}E_{\mathcal{S}'}[\max_{h}(l(h;\mathcal{S}' - l(h;\mathcal{S}))]$$
(10)