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Estimation VS Approximation

Lecturer: Ofer Dekel Scribe: Yanping Huang

1 Some inequalities

Chebyshev’s inequality: Let Z be a random variable with expected value y and variance 02 < co. Then
Ve >0, we have Pr(|Z — pu| > €) < 0?/é%.
Proof. Let X = (Z — p)? > 0, then E(X) = E[(Z — u)?] = 0. And from Markov’s inequality we have
2
o
PIX > @) = P((Z~p)* > &) = P(Z—pl > ) < B(X)/& = 5 (1)
O
Hoeffding’s inequality: Let Z; ... Z,, are independent random variables. Assume that the Z; are almost
surely bounded: Pr(Z; € [a,b]) = 1 where b—a = c. Then, for the average of these variables Z = = > | Z;,
we have P(Z — E(Z) > ¢) < exp(—zc%z) for any € > 0.

Proof. Without loss of generality we assume E(Z) = 0 and ¢ = 1 (or we can just let Z' = %(Z)) Then
from Markov’s inequality we have
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McDiarmid’s Inequality: Suppose Zi,...,Z,, are independent, the vector Z = {Zy,Zs,...,Z,} and
assume that f satisfies

: (3)
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for any 1 < i < m. In other words, replace the i-th coordinate x; by some other value changes the value of
f by at most d/m. Then f has the %—bounded property and satisfies the following inequality

Pr(f(Z) - EIf(2)] 2 ) < exp(~ ") ()

for any € > 0.



2 Generalization Bounds for finite hypothesis space

2.1 Chernoff bound for a fixed hypothesis

In the context of machine learning theory, let a sample set S = Z, each Z; = l(h; (z;,y:)), and f(Z) =
LN UR; (%5,y:)) = U(h; S). For a fixed hypothesis &, a loss function I € [0,c] and € > 0, we then have

Pr(|l(h; D) —U(h;S)| > €) < 2exp(— 2me® ), where D denotes the distribution of the examples (z,y) and S is

c2

2me>

a sample set drawn from D with size m. Let § = exp(—=2

[(h; D) — 1(1; S)| < e/ 28212

The above inequality says that for each hypothesis h € H, there exists a set S of samples that satisfies the
bound ¢4/ % with probability at least 1—3. However, these sets may be different for different hypotheses. For
a fixed observed sample §*, this inequality may not hold for all hypotheses in H including the hypothesis
hgry = argmingey [(h; §*) with minimum empirical risk. Only some hypotheses in H (not necessarily

hery) will satisfy this inequality.

). Then with probability at least 1 — §, we have

2.2 Uniform bound

To overcome the above limitation, we need to derive a uniform bound for all hypotheses in H. As shown
in Fig 1, we define the set Q; = {S ~ D : |l(h;; D) — I(hs; S)| > €} be the set contains all “bad” samples for
which the bound fails. For each i, Pr(€;) <. If |H| = k, we can write Pr(Q; U... U Q) < Zle Pr(,).
As a result, we obtain the uniform bound:

P(WYheH:l(h;D)—1(h;S) <e) < 1—2P(|l(hi;D—l(hi,S)|>e)|

m€2

1-2k exp(fQC2 ). (5)

Finally we have the theorem for a uniform bound
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Figure 1: Set diagram for 2; and the e uniformly good set of samples.

Theorem 1. If the size of the hypothesis space |H| =k, the loss function | € [0,c|, and S is the sample set
drawn from distribution D with |S| = m. Then Y6 > 0 and Vh € H, with probability at least 1 — ¢,

log(2/6) + log(k)
2m

[(h; D —1(h; S)| < C\/ (6)



2.3 Excess Risk
Define the excess risk for any hypothesis h € H be I(h; D) — minpey [(h; D). From Theorem 1 we have

I(hgra; D) < mingey l(h; D) + 2€ , as shown in Fig 2, where € = ¢ W.
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Figure 2: The empirical risk [(h;;S) and the range for the true risk I(h;; D). The difference between
l(hgrr; D) and I(h*; D) is at most 2¢ where h* = argmingey [(h; D)

2.4 Estimation VS Approximation

First we define the Bayesian risk minay possible n [(2; D) and the Bayesian hypothesis argmin(h; D), a hy-
pothesis that attains the Bayesian risk. Sometimes some errors may be inevitable, the Bayesian risk may be
strictly positive.

Take the binary classification task for example, where y € {—1,1} be the lab, and the loss function is
zero-one l(h; (x,y)) = 1p(z)£y- The risk for h can be written as:

E[lh)r#y] = EI[E[lh(z)¢y|X = ] (7)
where [E[lpy£y|X =2] = Pr(h(z) #y|X =)

(
[ Pry=-1X=2) ifhz)=+1
|\ PrY = 41X =2) ifh(z) = -1

We have the Bayesian hypothesis that minimizes the above risk

(8)

L )1 i Pr(y=1z=2)>05
Bayes —1 otherwise

if we know the distribution D = Pr(Y|X)Pr(X).

For a hypothesis space H, we define the approximation error as I(h*, D) —l(hpayes, D) and the estimation
error as l[(hgrar; D) — I(h*; D) where h* = arg ming,eq [(h; D).

We observe that as the size of hypothesis space k = |H| increases, the approximation error may decreases
while the estimation error will increase. Consider the following two scenarios demonstrated in Fig 3,

e Scenario 1: k= 1019 hpry = argmingey [(h; S). Then with probability at least 1—4, from the excess
risk theorem we have

21og(2/0) + log(1010)
2m
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Figure 3: The approximation errors are shown in solid arrows pointing from the Bayesian hypothesis hpayes
to h¥, where h} = arg miny,, ey, [(hs; D). The estimation errors are shown in dotted arrows pointing from h}
to hgry. Suppose hgpgy € Hi N Ha and |Ha| << |Hi|. The figure demonstrates the effect of the size of
hypothesis space on the approximation error and the estimation error.

e Scenario 2: k =3, H = {hgrm, h1, ha}. Now we have

2log(2/0) + log(3)

2m

I(h D) < minl(h,D 2
(herMm, )_2%171{1(7 )+ C\/

3 Generalization Bound for infinite hypothesis space

Theorem 2. If the size of the hypothesis space is infinite, |H| = oo, the loss function | € [0,¢c], and S is
the sample set drawn from distribution D with |S| = m. Then ¥§ > 0 and Yh € H, with probability at least
1-94,

[[(h; §) = I(h; D)| < €(0) 9)

Proof. To apply Hoeffding’s inequality 2, we define f(S) = maxpe[l(h; D — I(h;S)].
First we show that f(S) is ;% bounded. Vh, we change one example in§ —» &. I € [0,q, thus
|l(h,S") = I(h,S] < . I(h,D) remains the same, we have |f(S) — f(S;)| < =
Next we apply McDiarmid’s inequality,

2me?

Pr(|f(8) = E[f(S)]] = € <2exp(— )=19
f(s) < E[f(S)] +cvlog(2/8)/2m

where E[f(S)] = Es{maxpen[l(h; D —I(h;S)]}. The expectation is taken over all possible samples.
Third, we show that max;cz F(X;) < E(max;er X;). For Vj € Z, z; < maxz,;. Then EF(X;) <

<
E(max; Xl). Finally we have max; E(X;) < F(max; X;). Using this lemma, we can show

Es[f(S)] = Eslmax[i(h;D) — U(h; S)]]
= Eg[maX[Es/—l(h;S)]]
< EsBg[max(l(h; "= 1(h; 5))] (10)
O



