CSE522, Winter 2011, Learning Theory	Lecture 4-01/16/2011
Estimation VS Approximation	
Lecturer: Ofer Dekel	Scribe: Yanping Huang

1 Some inequalities

Chebyshev's inequality: Let Z be a random variable with expected value μ and variance $\sigma^{2}<\infty$. Then $\forall \epsilon>0$, we have $\operatorname{Pr}(|Z-\mu| \geq \epsilon) \leq \sigma^{2} / \epsilon^{2}$.

Proof. Let $X=(Z-\mu)^{2} \geq 0$, then $E(X)=E\left[(Z-\mu)^{2}\right]=\sigma^{2}$. And from Markov's inequality we have

$$
\begin{equation*}
P\left(X \geq \epsilon^{2}\right)=P\left((Z-\mu)^{2} \geq \epsilon^{2}\right)=P(|Z-\mu| \geq \epsilon) \leq E(X) / \epsilon^{2}=\frac{\sigma^{2}}{\epsilon^{2}} \tag{1}
\end{equation*}
$$

Hoeffding's inequality: Let $Z_{1} \ldots Z_{m}$ are independent random variables. Assume that the Z_{i} are almost surely bounded: $\operatorname{Pr}\left(Z_{i} \in[a, b]\right)=1$ where $b-a=c$. Then, for the average of these variables $Z=\frac{1}{m} \sum_{i=1}^{m} Z_{i}$, we have $P(Z-E(Z) \geq \epsilon) \leq \exp \left(-\frac{2 \epsilon^{2}}{c^{2}}\right)$ for any $\epsilon>0$.

Proof. Without loss of generality we assume $E(Z)=0$ and $c=1$ (or we can just let $Z^{\prime}=\frac{Z-E(Z)}{c}$). Then from Markov's inequality we have

$$
\begin{align*}
\operatorname{Pr}(Z \geq \epsilon) & =\operatorname{Pr}\left(e^{4 m \epsilon Z} \geq e^{4 m \epsilon^{2}}\right) \leq \frac{E\left[e^{4 m \epsilon Z}\right]}{e^{4 m \epsilon^{2}}} \\
& =\frac{E\left[\prod_{i} e^{4 \epsilon Z_{i}}\right]}{e^{4 m \epsilon^{2}}}=\frac{\prod_{i} E\left[e^{4 \epsilon Z_{i}}\right]}{e^{4 m \epsilon^{2}}} \quad \text { (Second equality holds only when } Z_{i} \text { s are independent) } \\
& \leq \frac{\prod_{i} e^{2 \epsilon^{2}}}{e^{4 m \epsilon^{2}}} \quad \text { (Using Jensen's inequality) } \\
& =\exp \left(-2 m \epsilon^{2}\right) \tag{2}
\end{align*}
$$

McDiarmid's Inequality: Suppose Z_{1}, \ldots, Z_{m} are independent, the vector $Z=\left\{Z_{1}, Z_{2}, \ldots, Z_{m}\right\}$ and assume that f satisfies

$$
\begin{equation*}
\sup _{z_{1}, \ldots, z_{m}, z_{i}^{\prime}}\left|f\left(z_{1}, \ldots, z_{m}\right)-f\left(z_{1}, \ldots, z_{i-1}, z_{i}^{\prime} z_{i+1}, \ldots, z_{m}\right)\right| \leq \frac{d}{m} \tag{3}
\end{equation*}
$$

for any $1 \leq i \leq m$. In other words, replace the i-th coordinate x_{i} by some other value changes the value of f by at most d / m. Then f has the $\frac{d}{m}$-bounded property and satisfies the following inequality

$$
\begin{equation*}
\operatorname{Pr}(f(Z)-E[f(Z)] \geq \epsilon) \leq \exp \left(-\frac{2 m \epsilon^{2}}{d^{2}}\right) \tag{4}
\end{equation*}
$$

for any $\epsilon>0$.

2 Generalization Bounds for finite hypothesis space

2.1 Chernoff bound for a fixed hypothesis

In the context of machine learning theory, let a sample set $\mathcal{S}=Z$, each $Z_{i}=l\left(h ;\left(x_{i}, y_{i}\right)\right)$, and $f(Z)=$ $\frac{1}{m} \sum_{i=1}^{m} l\left(h ;\left(x_{i}, y_{i}\right)\right)=l(h ; \mathcal{S})$. For a fixed hypothesis h, a loss function $l \in[0, c]$ and $\epsilon>0$, we then have $\operatorname{Pr}(|l(h ; \mathcal{D})-l(h ; \mathcal{S})| \geq \epsilon) \leq 2 \exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right)$, where \mathcal{D} denotes the distribution of the examples (x, y) and \mathcal{S} is a sample set drawn from \mathcal{D} with size m. Let $\delta=\exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right)$. Then with probability at least $1-\delta$, we have $|l(h ; \mathcal{D})-l(h ; \mathcal{S})| \leq c \sqrt{\frac{\log (2 / \delta)}{2 m}}$.

The above inequality says that for each hypothesis $h \in \mathcal{H}$, there exists a set \mathcal{S} of samples that satisfies the bound $c \sqrt{\frac{2 / \delta}{2 m}}$ with probability at least $1-\delta$. However, these sets may be different for different hypotheses. For a fixed observed sample \mathcal{S}^{*}, this inequality may not hold for all hypotheses in \mathcal{H} including the hypothesis $h_{E R M}=\arg \min _{h \in \mathcal{H}} l\left(h ; \mathcal{S}^{*}\right)$ with minimum empirical risk. Only some hypotheses in \mathcal{H} (not necessarily $h_{E R M}$) will satisfy this inequality.

2.2 Uniform bound

To overcome the above limitation, we need to derive a uniform bound for all hypotheses in \mathcal{H}. As shown in Fig 1, we define the set $\Omega_{i}=\left\{\mathcal{S} \sim \mathcal{D}:\left|l\left(h_{i} ; \mathcal{D}\right)-l\left(h_{i} ; \mathcal{S}\right)\right|>\epsilon\right\}$ be the set contains all "bad" samples for which the bound fails. For each $i, \operatorname{Pr}\left(\Omega_{i}\right) \leq \delta$. If $|\mathcal{H}|=k$, we can write $\operatorname{Pr}\left(\Omega_{1} \cup \ldots \cup \Omega_{k}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(\Omega_{i}\right)$. As a result, we obtain the uniform bound:

$$
\begin{align*}
P(\forall h \in \mathcal{H}: l(h ; \mathcal{D})-l(h ; \mathcal{S}) \leq \epsilon) & \leq 1-\sum_{i} P\left(\left|l\left(h_{i} ; \mathcal{D}-l\left(h_{i}, \mathcal{S}\right) \mid>\epsilon\right)\right|\right. \\
& =1-2 k \exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right) \tag{5}
\end{align*}
$$

Finally we have the theorem for a uniform bound

Figure 1: Set diagram for Ω_{i} and the ϵ uniformly good set of samples.
Theorem 1. If the size of the hypothesis space $|\mathcal{H}|=k$, the loss function $l \in[0, c]$, and \mathcal{S} is the sample set drawn from distribution \mathcal{D} with $|\mathcal{S}|=m$. Then $\forall \delta>0$ and $\forall h \in \mathcal{H}$, with probability at least $1-\delta$,

$$
\begin{equation*}
\left\lvert\, l\left(h ; \mathcal{D}-l(h ; \mathcal{S}) \left\lvert\, \leq c \sqrt{\frac{\log (2 / \delta)+\log (k)}{2 m}}\right.\right.\right. \tag{6}
\end{equation*}
$$

2.3 Excess Risk

Define the excess risk for any hypothesis $h \in \mathcal{H}$ be $l(h ; \mathcal{D})-\min _{h \in \mathcal{H}} l(h ; \mathcal{D})$. From Theorem 1 we have $l\left(h_{E R M} ; \mathcal{D}\right) \leq \min _{h \in \mathcal{H}} l(h ; \mathcal{D})+2 \epsilon$, as shown in Fig 2 , where $\epsilon=c \sqrt{\frac{\log (2 / \delta)+\log (k)}{2 m}}$.

Figure 2: The empirical risk $l\left(h_{i} ; \mathcal{S}\right)$ and the range for the true risk $l\left(h_{i} ; \mathcal{D}\right)$. The difference between $l\left(h_{E R M} ; \mathcal{D}\right)$ and $l\left(h^{*} ; \mathcal{D}\right)$ is at most 2ϵ where $h^{*}=\arg \min _{h \in \mathcal{H}} l(h ; \mathcal{D})$

2.4 Estimation VS Approximation

First we define the Bayesian risk $\min _{\text {all possible }} l(h ; \mathcal{D})$ and the Bayesian hypothesis $\arg \min l(h ; \mathcal{D})$, a hypothesis that attains the Bayesian risk. Sometimes some errors may be inevitable, the Bayesian risk may be strictly positive.

Take the binary classification task for example, where $y \in\{-1,1\}$ be the lab, and the loss function is zero-one $l(h ;(x, y))=\mathbf{1}_{h(x) \neq y}$. The risk for h can be written as:

$$
\text { where } \begin{align*}
E\left[E\left[\mathbf{1}_{h) x \neq y}\right]\right. & =E_{x}\left[E\left[\mathbf{1}_{h(x) \neq y} \mid X=x\right]\right] \tag{7}\\
& = \begin{cases}\operatorname{Pr}(Y=-1 \mid X=x) & \text { if } h(x)=+1 \\
\operatorname{Pr}(Y=+1 \mid X=x) & \text { if } h(x)=-1\end{cases}
\end{align*}
$$

We have the Bayesian hypothesis that minimizes the above risk

$$
h_{\text {Bayes }}= \begin{cases}+1 & \text { if } \operatorname{Pr}(y=1 \mid x=x)>0.5 \tag{8}\\ -1 & \text { otherwise }\end{cases}
$$

if we know the distribution $\mathcal{D}=\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)$.
For a hypothesis space \mathcal{H}, we define the approximation error as $l\left(h^{*}, \mathcal{D}\right)-l\left(h_{\text {Bayes }}, \mathcal{D}\right)$ and the estimation error as $l\left(h_{E R M} ; \mathcal{D}\right)-l\left(h^{*} ; \mathcal{D}\right)$ where $h^{*}=\arg \min _{h \in \mathcal{H}} l(h ; \mathcal{D})$.

We observe that as the size of hypothesis space $k=|\mathcal{H}|$ increases, the approximation error may decreases while the estimation error will increase. Consider the following two scenarios demonstrated in Fig 3,

- Scenario 1: $k=10^{10}, h_{E R M}=\arg \min _{h \in \mathcal{H}} l(h ; S)$. Then with probability at least $1-\delta$, from the excess risk theorem we have

$$
l\left(h_{E R M}, \mathcal{D}\right) \leq \min _{h \in \mathcal{H}} l(h, \mathcal{D})+2 c \sqrt{\frac{2 \log (2 / \delta)+\log \left(10^{10}\right)}{2 m}}
$$

Figure 3: The approximation errors are shown in solid arrows pointing from the Bayesian hypothesis $h_{\text {Bayes }}$ to h_{i}^{*}, where $h_{i}^{*}=\arg \min _{h_{i} \in \mathcal{H}_{i}} l\left(h_{i} ; \mathcal{D}\right)$. The estimation errors are shown in dotted arrows pointing from h_{i}^{*} to $h_{E R M}$. Suppose $h_{E R M} \in \mathcal{H}_{1} \cap \mathcal{H}_{2}$ and $\left|\mathcal{H}_{2}\right| \ll\left|\mathcal{H}_{1}\right|$. The figure demonstrates the effect of the size of hypothesis space on the approximation error and the estimation error.

- Scenario 2: $k=3, \mathcal{H}=\left\{h_{E R M}, h_{1}, h_{2}\right\}$. Now we have

$$
l\left(h_{E R M}, \mathcal{D}\right) \leq \min _{h \in \mathcal{H}} l(h, \mathcal{D})+2 c \sqrt{\frac{2 \log (2 / \delta)+\log (3)}{2 m}}
$$

3 Generalization Bound for infinite hypothesis space

Theorem 2. If the size of the hypothesis space is infinite, $|\mathcal{H}|=\infty$, the loss function $l \in[0, c]$, and \mathcal{S} is the sample set drawn from distribution \mathcal{D} with $|\mathcal{S}|=m$. Then $\forall \delta>0$ and $\forall h \in \mathcal{H}$, with probability at least $1-\delta$,

$$
\begin{equation*}
|l(h ; \mathcal{S})-l(h ; \mathcal{D})| \leq \epsilon(\delta) \tag{9}
\end{equation*}
$$

Proof. To apply Hoeffding's inequality 2 , we define $f(S)=\max _{h \in \mathcal{H}}[l(h ; \mathcal{D}-l(h ; \mathcal{S})]$.
First we show that $f(\mathcal{S})$ is $\frac{c}{m}$ bounded. $\forall h$, we change one example in $\mathcal{S} \rightarrow \mathcal{S}^{\prime} . l \in[0, c]$, thus $\left\lvert\, l\left(h, \mathcal{S}^{\prime}\right)-l\left(h, \mathcal{S} \left\lvert\, \leq \frac{c}{m} . l(h, \mathcal{D})\right.\right.$ remains the same, we have $|f(\mathcal{S})-f(\mathcal{S} ;)| \leq \frac{c}{m}\right.$.

Next we apply McDiarmid's inequality,

$$
\begin{aligned}
\operatorname{Pr}(|f(\mathcal{S})-E[f(\mathcal{S})]| & \geq \epsilon) \leq 2 \exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right)=\delta \\
f(s) & \leq E[f(\mathcal{S})]+c \sqrt{\log (2 / \delta) / 2 m}
\end{aligned}
$$

where $E[f(\mathcal{S})]=E_{\mathcal{S}}\left\{\max _{h \in \mathcal{H}}[l(h ; \mathcal{D}-l(h ; \mathcal{S})]\}\right.$. The expectation is taken over all possible samples.
Third, we show that $\max _{i \in \mathcal{I}} E\left(X_{i}\right) \leq E\left(\max _{i \in \mathcal{I}} X_{i}\right)$. For $\forall j \in \mathcal{I}, x_{j} \leq \max x_{i}$. Then $E\left(X_{j}\right) \leq$ $E\left(\max _{i} X_{i}\right)$. Finally we have $\max _{j} E\left(X_{j}\right) \leq E\left(\max _{i} X_{i}\right)$. Using this lemma, we can show

$$
\begin{align*}
E_{\mathcal{S}}[f(\mathcal{S})] & =E_{\mathcal{S}}\left[\max _{h}[l(h ; \mathcal{D})-l(h ; \mathcal{S})]\right] \\
& =E_{\mathcal{S}}\left[\max _{h}\left[E_{\mathcal{S}^{\prime}}-l(h ; \mathcal{S})\right]\right] \\
& \leq E_{\mathcal{S}} E_{\mathcal{S}^{\prime}}\left[\max _{h}\left(l\left(h ; \mathcal{S}^{\prime}-l(h ; \mathcal{S})\right)\right]\right. \tag{10}
\end{align*}
$$

