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Infinite Hypothesis Classes: Rademacher complexity

Lecturer: Ofer Dekel Scribe: Yanping Huang

1 Review: empirical risk minimization

For a hypothesis class H, we define the empirical risk minimizer hgras = argming, g4 l(h;S) and the risk
minimizer (the optimal hypothesis in the class) h* = argming, ¢4, I(h; D). By the definition of ERM, we know
that

l(hgrw;S) —1(R5S) < 0 . (1)

If we are able to prove:
I(h*;8) =1k D) < @ 2)
I(hery; D) —U(hgry;S) < € (3)

then we can simply sum Egs.(1 - 3) and conclude that the excess risk is upper bounded by
l(hERM;D) — l(h*,D) < €1 +€ .

Since h* is a deterministic function (it does not rely on the random sample S), we can prove Eq.(2) by
directly applying Hoeffding’s inequality. The same cannot be said for hggrys, which is a random function
that depends on the sample S. Our strategy is therefore to prove something more general than Eq.(3),
namely,

Vhe H Uhgrm;D) —U(herm;S) < e .

2 Generalization Bound for infinite hypothesis space

Theorem 1. If the size of the hypothesis space is infinite, |H| = oo, the loss function | € [0,¢], and S is
the sample set drawn from distribution D with |S| = m. Then ¥§ > 0 and Yh € H, with probability at least
1-9,

log(1/6

1(5:8) = 11 D)) < €(0) = R(Lo H) + ey 5

(4)
Proof. To apply Hoeffding’s inequality, we define

() = max[i(h; D — (1 S)].

First we show that f(S) is £ bounded. For all hypothesis h € H, we change one example in S — S'.
1 €[0,¢], thus |I(h,S") = I(h,S| < . I(h,D) remains the same, we have |f(S) — f(S;)| < =.
Next we apply McDiarmid’s inequality,

Pr(f(S) —E[f(S)[ =€) < exp(—

f(s) < Elf(S)]+cvlog(1/6)/2m

where E[f(S)] = Es{maxpey[l(h; D — I(h;S)]}. The expectation is taken over all possible samples.
Third, we show that E[f(S)] < R(l o H), where R(l o H) is the Rademacher complexity. We begin with
the following tow lemmas.




Lemma 2. max;c7 E(X;) < E(max;ez X;)

Proof. Vj € T, x; < maxz;. .. E(X;) < E(max; X;). It follows that max; E(X;) < E(max; X;).

Lemma 3. Let Zy and Zs be identical independent distributed, E[f(Z1, Z2] = E[f(Z2, Z1)]

Proof. E[f(Z1,22)] = fz

Using lemma 2, we can show

Es[f(5)] =

1,22

<

f(Zlsz)P(zlsz)dzldzz = f22,21 f(Z27ZI)P(22721)d22d21 = E[f(ZQa Zl)]

Es[max[i(h; D) — U(h; S)]]
Eslmax(Es — (5S)]  (Define ' = {(al,s}72)
EsEs [m}zlix(l(h; S —1(h;38))) (Using Lemma2)

m

EsEs hmaxl-— 3 (1~ 1]

i=1

where I; = l(h; (z;,y:)) and I} = 1(h; (},y})).
Lemma 3 allows us to swap any pair of (I;,1}) we want. We can define & = (07 ...0,)T € {£1}™, 0, =1

7

O

(5)

with probability 1/2 and o; = —1 with probability 1/2, for any ¢ = 1,...,m. We continues on inequality 5,

E[f(5)] <
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Remarks on Rademacher’s complexity:

e Since o; € {£1}, we can rewrite the Rademacher’s complexity as:

Rm(loH):%EsEa[Igg{c( Yo=Y W)

i€{i:o;=1} i€{iio;=—1}

The & partitioned the sample § into two disjoint sets. The Rademacher’s complexity estimates how
much difference between the total losses of two random-assigned disjoint sets can a hypothesis make.



e We can rewrite | = {li,...,lm}. Then the inner product < &, ['> is a measurement of the correlation
between two vectors ¢ and I. The Rademacher’s complexity measures how well correlated the most-
correlated hypothesis is to a random labeling of points in S.

e The Rademacher’s complexity depends on the distribution D. We need to know D in order to compute
R (loH). This leads to the so-called empirical Rademacher’s complexity.

3 Empirical Rademacher Average

We define the empirical Rademacher average as:

HOE maXZUZ (i) = m(lOH,S) (7)

m heH

Notice that f’(S) satisfies the 2¢ bounded difference property. Since Es[f’(S)] = R (Il o H), applying
McDiarmid’s inequality we have

Theorem 4. V6 > 0, with probability at least 1 — 6,

log(1/4)

2m

Es[f'(8)] = f(S) < 2¢

Define the set Q = {S: f(S) > Es[f(S)] + ¢/ 22}, and Q' = {S : Es[f'(S)] > f/(S) + 2¢y/ 32}, From
Bole’s inequality we have P(QU Q') < P(Q2) 4+ P(£). We then have the following bound:

Theorem 5. V6 > 0, with probability at least 1 — 29,

VheH: (D) —I:S) < Rm(loH, S)+3\/1/ ()

3.1 Examples

Example 1 : Binary classification with 0—1 loss

In this example, y € —1,+1, the 0-1 loss function [(h;(x,y)) = 1p@)zy. For a hypothesis class H
and a training sample S, assume that we have an algorithm returns the empirical risk minimizer hggy =
argming, ¢y, {(h; S). We would like to compute the upper bound of {(hgrar; P) using the uniform bound for
the infinite hypothesis class.

The empirical Rademacher average can be written as:

2
Rm(loH) = EE mauxX:UZ (i, 9i))
2 m m
= —Epmax> (ks (2, 00) + Y (il (hs (w1, 5:) — U (i, 0397))]
m heH =1 =
2 m
= B Igleag[zl(h;(%aiyi))* > (10)

)
-

7 o, =—1

The above equation 10 can be verified by different combinations of /; and ¢;: As shown in the above Table 1,
the difference [ol(h; (z,y)) — l(h; (x,0y)] = 0 when 0 = 1, and —1 when o = —1.



o | (Mx),y) | ollh; (z,y)) || (WMx),0y) | U(h;(x,0y) || ol(h; (z,y)) = U(h; (z,0y)
1 | hz)=y 0 h(z) = oy 0 0

1 | hz)#y 1 h(z) # oy 1 0
—1 | h(z)#y —1 h(z) = oy 0 —1
—1 | h(z)=y 0 h(zx) # oy 1 -1

Continue on the above derivation 10, we have

) m 2m
Rm(lOH) = EE r}{lea%[;l(]% (mlaazyl)) - E?
= ZEsmax(d (1~ U(hs (@ —ow))] — 1

[

1=
m

2
= 1+ EE[; r}{leaﬁc[z; —l(h; (24, —0o3ys))]

.
Il

= 1- EE&‘ i%lﬁ[; 1(h; (24, —03y:))]
1 &
- 1—2E52%1£E[Zl(h;(xi,ai))] (11)

i=1

Again we define f(&) = miny, ju = [>i0, U(R; (24,04))], f”(5) satisfies 2 bounded difference property.
Thus we have:

L [log(1/8)

ELf (@) < 1"(5) + 2 5 (12
with prability at least 1 — 6.
Corollary 6. V§ > 0, with probability at least 1 — 39,
Vh e H,l(h;D) <I1(h;S) + 1—2m1n—§:l (z4,0%)) M (13)
- heH m 2m

If some hypothesis i € H manges to “explain” the random labels such that mingey; - - ZZL U(h; (zi,04) =
0, then the complexity for H would reach the maximum. A hypothesis can be considered a “good” hypothesis
if I(h; (x;,0;)) = 0 with probability 0.5, the expected loss with respect to random labels is just 0.5.



