CSE522, Winter 2011, Learning Theory	Lecture 5-01/24/2011
Infinite Hypothesis Classes: Rademacher complexity	
Lecturer: Ofer Dekel	Scribe: Yanping Huang

1 Review: empirical risk minimization

For a hypothesis class \mathcal{H}, we define the empirical risk minimizer $h_{E R M}=\operatorname{argmin}_{h \in \mathcal{H}} l(h ; \mathcal{S})$ and the risk minimizer (the optimal hypothesis in the class) $h^{\star}=\operatorname{argmin}_{h \in \mathcal{H}} l(h ; \mathcal{D})$. By the definition of ERM, we know that

$$
\begin{equation*}
l\left(h_{E R M} ; \mathcal{S}\right)-l\left(h^{\star} ; \mathcal{S}\right) \leq 0 . \tag{1}
\end{equation*}
$$

If we are able to prove:

$$
\begin{align*}
l\left(h^{\star} ; \mathcal{S}\right)-l\left(h^{\star} ; \mathcal{D}\right) & \leq \epsilon_{1} \tag{2}\\
l\left(h_{E R M} ; \mathcal{D}\right)-l\left(h_{E R M} ; \mathcal{S}\right) & \leq \epsilon_{2} \tag{3}
\end{align*}
$$

then we can simply sum Eqs. $(1-3)$ and conclude that the excess risk is upper bounded by

$$
l\left(h_{E R M} ; \mathcal{D}\right)-l\left(h^{\star} ; \mathcal{D}\right) \leq \epsilon_{1}+\epsilon_{2}
$$

Since h^{\star} is a deterministic function (it does not rely on the random sample S), we can prove Eq.(2) by directly applying Hoeffding's inequality. The same cannot be said for $h_{E R M}$, which is a random function that depends on the sample S. Our strategy is therefore to prove something more general than Eq.(3), namely,

$$
\forall h \in \mathcal{H} \quad l\left(h_{E R M} ; \mathcal{D}\right)-l\left(h_{E R M} ; \mathcal{S}\right) \leq \epsilon_{2} .
$$

2 Generalization Bound for infinite hypothesis space

Theorem 1. If the size of the hypothesis space is infinite, $|\mathcal{H}|=\infty$, the loss function $l \in[0, c]$, and \mathcal{S} is the sample set drawn from distribution \mathcal{D} with $|\mathcal{S}|=m$. Then $\forall \delta>0$ and $\forall h \in \mathcal{H}$, with probability at least $1-\delta$,

$$
\begin{equation*}
|l(h ; \mathcal{S})-l(h ; \mathcal{D})| \leq \epsilon(\delta)=\mathcal{R}(l \circ \mathcal{H})+c \sqrt{\frac{\log (1 / \delta}{2 m}} \tag{4}
\end{equation*}
$$

Proof. To apply Hoeffding's inequality, we define

$$
f(S)=\max _{h \in \mathcal{H}}[l(h ; \mathcal{D}-l(h ; \mathcal{S})] .
$$

First we show that $f(\mathcal{S})$ is $\frac{c}{m}$ bounded. For all hypothesis $h \in \mathcal{H}$, we change one example in $\mathcal{S} \rightarrow \mathcal{S}^{\prime}$. $l \in[0, c]$, thus $\left\lvert\, l\left(h, \mathcal{S}^{\prime}\right)-l\left(h, \mathcal{S} \left\lvert\, \leq \frac{c}{m} . l(h, \mathcal{D})\right.\right.$ remains the same, we have $|f(\mathcal{S})-f(\mathcal{S} ;)| \leq \frac{c}{m}$. \right.

Next we apply McDiarmid's inequality,

$$
\begin{aligned}
\operatorname{Pr}(f(\mathcal{S})-\mathrm{E}[f(\mathcal{S}) \mid \geq \epsilon) & \leq \exp \left(-\frac{2 m \epsilon^{2}}{c^{2}}\right)=\delta \\
f(s) & \leq E[f(\mathcal{S})]+c \sqrt{\log (1 / \delta) / 2 m}
\end{aligned}
$$

where $\mathrm{E}[f(\mathcal{S})]=\mathrm{E}_{\mathcal{S}}\left\{\max _{h \in \mathcal{H}}[l(h ; \mathcal{D}-l(h ; \mathcal{S})]\}\right.$. The expectation is taken over all possible samples.
Third, we show that $\mathrm{E}[f(\mathcal{S})] \leq \mathcal{R}(l \circ \mathcal{H})$, where $\mathcal{R}(l \circ \mathcal{H})$ is the Rademacher complexity. We begin with the following tow lemmas.

Lemma 2. $\max _{i \in \mathcal{I}} \mathrm{E}\left(X_{i}\right) \leq \mathrm{E}\left(\max _{i \in \mathcal{I}} X_{i}\right)$
Proof. $\forall j \in \mathcal{I}, x_{j} \leq \max x_{i} . \therefore \mathrm{E}\left(X_{j}\right) \leq \mathrm{E}\left(\max _{i} X_{i}\right)$. It follows that $\max _{j} \mathrm{E}\left(X_{j}\right) \leq \mathrm{E}\left(\max _{i} X_{i}\right)$.
Lemma 3. Let Z_{1} and Z_{2} be identical independent distributed, $\mathrm{E}\left[f\left(Z_{1}, Z_{2}\right]=\mathrm{E}\left[f\left(Z_{2}, Z_{1}\right)\right]\right.$
Proof. $\mathrm{E}\left[f\left(Z_{1}, Z_{2}\right)\right]=\int_{z_{1}, z_{2}} f\left(Z_{1}, Z_{2}\right) P\left(z_{1}, z_{2}\right) d_{z_{1}} d_{z_{2}}=\int_{z_{2}, z_{1}} f\left(Z_{2}, Z_{1}\right) P\left(z_{2}, z_{1}\right) d_{z_{2}} d_{z_{1}}=\mathrm{E}\left[f\left(Z_{2}, Z_{1}\right)\right]$.
Using lemma 2, we can show

$$
\begin{align*}
\mathrm{E}_{\mathcal{S}}[f(\mathcal{S})] & =\mathrm{E}_{\mathcal{S}}\left[\max _{h}[l(h ; \mathcal{D})-l(h ; \mathcal{S})]\right] \\
& =\mathrm{E}_{\mathcal{S}}\left[\max _{h}\left[E_{\mathcal{S}^{\prime}}-l(h ; \mathcal{S})\right]\right] \quad \text { (Define } \mathcal{S}^{\prime}=\left\{\left(x_{i}^{\prime}, y_{i}^{\prime}\right\}_{i=1}^{m}\right) \\
& \leq \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\mathcal{S}^{\prime}}\left[\max _{h}\left(l\left(h ; \mathcal{S}^{\prime}\right)-l(h ; \mathcal{S})\right)\right] \quad \text { (Using Lemma2) } \\
& =\mathrm{E}_{\mathcal{S}} \mathrm{E}_{\mathcal{S}^{\prime}}\left[\max _{h}\left[\frac{1}{m} \sum_{i=1}^{m}\left(l_{i}^{\prime}-l_{i}\right)\right]\right] \tag{5}
\end{align*}
$$

where $l_{i}=l\left(h ;\left(x_{i}, y_{i}\right)\right)$ and $l_{i}^{\prime}=l\left(h ;\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right)$.
Lemma 3 allows us to swap any pair of $\left(l_{i}, l_{i}^{\prime}\right)$ we want. We can define $\vec{\sigma}=\left(\sigma_{1} \ldots \sigma_{m}\right)^{T} \in\{ \pm 1\}^{m}, \sigma_{i}=1$ with probability $1 / 2$ and $\sigma_{i}=-1$ with probability $1 / 2$, for any $i=1, \ldots, m$. We continues on inequality 5 ,

$$
\begin{align*}
\mathrm{E}[f(\mathcal{S})] & \leq \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\mathcal{S}^{\prime}}\left[\max _{h}\left[\frac{1}{m} \sum_{i=1}^{m}\left(l_{i}^{\prime}-l_{i}\right)\right]\right] \\
& =\mathrm{E}_{\mathcal{S}} \mathrm{E}_{\mathcal{S}^{\prime}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}}\left[\frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(l_{i}^{\prime}-l_{i}\right)\right]\right] \\
& =\frac{1}{m} \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\mathcal{S}^{\prime}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}}\left(\sum_{i=1}^{m} \sigma_{i} l_{i}^{\prime}-\sum_{i=1}^{m} \sigma_{i} l_{i}\right)\right] \\
& \leq \frac{1}{m} \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\mathcal{S}^{\prime}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}}\left(\sum_{i=1}^{m} \sigma_{i} l_{i}^{\prime}\right)+\max _{h \in \mathcal{H}}\left(\sum_{i=1}^{m} \sigma_{i} l_{i}\right)\right] \\
& =\frac{1}{m} \mathrm{E}_{\mathcal{S}^{\prime}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}}\left(\sum_{i=1}^{m} \sigma_{i} l_{i}^{\prime}\right)\right]+\frac{1}{m} \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}}\left(\sum_{i=1}^{m} \sigma_{i} l_{i}\right)\right] \\
& =\frac{2}{m} \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}}\left(\sum_{i=1}^{m} \sigma_{i} l\left(h ;\left(x_{i}, y_{i}\right)\right)\right)\right] \\
& \equiv \mathcal{R}_{m}(l \circ \mathcal{H}) \tag{6}
\end{align*}
$$

Remarks on Rademacher's complexity:

- Since $\sigma_{i} \in\{ \pm 1\}$, we can rewrite the Rademacher's complexity as:

$$
\mathcal{R}_{m}(l \circ \mathcal{H})=\frac{2}{m} \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}}\left(\sum_{i \in\left\{i: \sigma_{i}=1\right\}} l_{i}-\sum_{i \in\left\{i: \sigma_{i}=-1\right\}} l_{i}\right)\right]
$$

The $\vec{\sigma}$ partitioned the sample \mathcal{S} into two disjoint sets. The Rademacher's complexity estimates how much difference between the total losses of two random-assigned disjoint sets can a hypothesis make.

- We can rewrite $\vec{l}=\left\{l_{1}, \ldots, l_{m}\right\}$. Then the inner product $\langle\vec{\sigma}, \vec{l}\rangle$ is a measurement of the correlation between two vectors $\vec{\sigma}$ and \vec{l}. The Rademacher's complexity measures how well correlated the mostcorrelated hypothesis is to a random labeling of points in \mathcal{S}.
- The Rademacher's complexity depends on the distribution \mathcal{D}. We need to know \mathcal{D} in order to compute $\mathcal{R}_{m}(l \circ \mathcal{H})$. This leads to the so-called empirical Rademacher's complexity.

3 Empirical Rademacher Average

We define the empirical Rademacher average as:

$$
\begin{equation*}
f^{\prime}(\mathcal{S})=\frac{2}{m} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} l\left(h ;\left(x_{i}, y_{i}\right)\right)\right]=\hat{\mathcal{R}}_{m}(l \circ \mathcal{H}, \mathcal{S}) \tag{7}
\end{equation*}
$$

Notice that $f^{\prime}(\mathcal{S})$ satisfies the $\frac{2 c}{m}$ bounded difference property. Since $\mathrm{E}_{\mathcal{S}}\left[f^{\prime}(\mathcal{S})\right]=\mathcal{R}_{m}(l \circ \mathcal{H})$, applying McDiarmid 's inequality we have

Theorem 4. $\forall \delta \geq 0$, with probability at least $1-\delta$,

$$
\begin{equation*}
\mathrm{E}_{\mathcal{S}}\left[f^{\prime}(\mathcal{S})\right]-f^{\prime}(\mathcal{S}) \leq 2 c \sqrt{\frac{\log (1 / \delta)}{2 m}} \tag{8}
\end{equation*}
$$

Define the set $\Omega=\left\{\mathcal{S}: f(\mathcal{S})>E_{\mathcal{S}}[f(\mathcal{S})]+c \sqrt{\frac{1 / \delta}{2 m}}\right\}$, and $\Omega^{\prime}=\left\{\mathcal{S}: E_{\mathcal{S}}\left[f^{\prime}(\mathcal{S})\right]>f^{\prime}(\mathcal{S})+2 c \sqrt{\frac{1 / \delta}{2 m}}\right\}$. From Bole's inequality we have $P\left(\Omega \cup \Omega^{\prime}\right) \leq P(\Omega)+P\left(\Omega^{\prime}\right)$. We then have the following bound:

Theorem 5. $\forall \delta \geq 0$, with probability at least $1-2 \delta$,

$$
\begin{equation*}
\forall h \in \mathcal{H}: \quad l(h ; \mathcal{D})-l(; \mathcal{S}) \leq \hat{\mathcal{R}}_{m}(l \circ \mathcal{H}, \mathcal{S})+3 c \sqrt{\frac{1 / \delta}{2 m}} \tag{9}
\end{equation*}
$$

3.1 Examples

Example 1 : Binary classification with 0-1 loss

In this example, $y \in-1,+1$, the $0-1$ loss function $l(h ;(x, y))=\mathbf{1}_{h(x) \neq y}$. For a hypothesis class \mathcal{H} and a training sample \mathcal{S}, assume that we have an algorithm returns the empirical risk minimizer $h_{E R M}=$ $\operatorname{argmin}_{h \in \mathcal{H}} l(h ; \mathcal{S})$. We would like to compute the upper bound of $l\left(h_{E R M} ; \mathcal{D}\right)$ using the uniform bound for the infinite hypothesis class.

The empirical Rademacher average can be written as:

$$
\begin{align*}
\mathcal{R}_{m}(l \circ \mathcal{H}) & =\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} l\left(h ;\left(x_{i}, y_{i}\right)\right) \\
& =\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{h \in \mathcal{H}}\left[\sum_{i=1}^{m} l\left(h ;\left(x_{i}, \sigma_{i} y_{i}\right)\right)+\sum_{i=1}^{m}\left(\sigma_{i} l\left(h ;\left(x_{i}, y_{i}\right)-l\left(h ;\left(x_{i}, \sigma_{i} y_{i}\right)\right)\right]\right.\right. \\
& =\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{h \in \mathcal{H}}\left[\sum_{i=1}^{m} l\left(h ;\left(x_{i}, \sigma_{i} y_{i}\right)\right)-\sum_{i: \sigma_{i}=-1} 1\right] \tag{10}
\end{align*}
$$

The above equation 10 can be verified by different combinations of l_{i} and σ_{i} : As shown in the above Table 1, the difference $[\sigma l(h ;(x, y))-l(h ;(x, \sigma y)]=0$ when $\sigma=1$, and -1 when $\sigma=-1$.

σ	$(h(x), y)$	$\sigma l(h ;(x, y))$	$(h(x), \sigma y)$	$l(h ;(x, \sigma y)$	$\sigma l(h ;(x, y))-l(h ;(x, \sigma y)$
1	$h(x)=y$	0	$h(x)=\sigma y$	0	0
1	$h(x) \neq y$	1	$h(x) \neq \sigma y$	1	0
-1	$h(x) \neq y$	-1	$h(x)=\sigma y$	0	-1
-1	$h(x)=y$	0	$h(x) \neq \sigma y$	1	-1

Continue on the above derivation 10, we have

$$
\begin{align*}
\mathcal{R}_{m}(l \circ \mathcal{H}) & =\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{h \in \mathcal{H}}\left[\sum_{i=1}^{m} l\left(h ;\left(x_{i}, \sigma_{i} y_{i}\right)\right)-\frac{2}{m} \frac{m}{2}\right. \\
& =\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{h \in \mathcal{H}}\left[\sum_{i=1}^{m}\left[1-l\left(h ;\left(x_{i},-\sigma_{i} y_{i}\right)\right)\right]-1\right. \\
& =1+\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{h \in \mathcal{H}}\left[\sum_{i=1}^{m}-l\left(h ;\left(x_{i},-\sigma_{i} y_{i}\right)\right)\right] \\
& =1-\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \min _{h \in \mathcal{H}}\left[\sum_{i=1}^{m} l\left(h ;\left(x_{i},-\sigma_{i} y_{i}\right)\right)\right] \\
& =1-2 \mathrm{E}_{\vec{\sigma}} \min _{h \in \mathcal{H}} \frac{1}{m}\left[\sum_{i=1}^{m} l\left(h ;\left(x_{i}, \sigma_{i}\right)\right)\right] \tag{11}
\end{align*}
$$

Again we define $f^{\prime \prime}(\vec{\sigma})=\min _{h \text { inH }} \frac{1}{m}\left[\sum_{i=1}^{m} l\left(h ;\left(x_{i}, \sigma_{i}\right)\right)\right], f^{\prime \prime}(\vec{\sigma})$ satisfies $\frac{2}{m}$ bounded difference property. Thus we have:

$$
\begin{equation*}
\mathrm{E}\left[f^{\prime \prime}(\vec{\sigma})\right] \leq f^{\prime \prime}(\vec{\delta})+2 \sqrt{\frac{\log (1 / \delta)}{2 m}} \tag{12}
\end{equation*}
$$

with prability at least $1-\delta$.
Corollary 6. $\forall \delta \geq 0$, with probability at least $1-3 \delta$,

$$
\begin{equation*}
\forall h \in \mathcal{H}, l(h ; \mathcal{D}) \leq l(h ; \mathcal{S})+\left(1-2 \min _{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} l\left(h ;\left(x_{i}, \sigma_{i}\right)\right)+5 \sqrt{\frac{\log (1 / \delta)}{2 m}}\right. \tag{13}
\end{equation*}
$$

If some hypothesis $h \in \mathcal{H}$ manges to "explain" the random labels such that $\min _{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} l\left(h ;\left(x_{i}, \sigma_{i}\right)=\right.$ 0 , then the complexity for \mathcal{H} would reach the maximum. A hypothesis can be considered a "good" hypothesis if $l\left(h ;\left(x_{i}, \sigma_{i}\right)\right)=0$ with probability 0.5 , the expected loss with respect to random labels is just 0.5 .

