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Infinite Hypothesis Classes: Rademacher complexity
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1 Review: empirical risk minimization

For a hypothesis class H, we define the empirical risk minimizer hERM = argminh∈H l(h;S) and the risk
minimizer (the optimal hypothesis in the class) h? = argminh∈H l(h;D). By the definition of ERM, we know
that

l(hERM ;S)− l(h?;S) ≤ 0 . (1)

If we are able to prove:

l(h?;S)− l(h?;D) ≤ ε1 (2)

l(hERM ;D)− l(hERM ;S) ≤ ε2 (3)

then we can simply sum Eqs.(1 - 3) and conclude that the excess risk is upper bounded by

l(hERM ;D)− l(h?;D) ≤ ε1 + ε2 .

Since h? is a deterministic function (it does not rely on the random sample S), we can prove Eq.(2) by
directly applying Hoeffding’s inequality. The same cannot be said for hERM , which is a random function
that depends on the sample S. Our strategy is therefore to prove something more general than Eq.(3),
namely,

∀h ∈ H l(hERM ;D)− l(hERM ;S) ≤ ε2 .

2 Generalization Bound for infinite hypothesis space

Theorem 1. If the size of the hypothesis space is infinite, |H| = ∞, the loss function l ∈ [0, c], and S is
the sample set drawn from distribution D with |S| = m. Then ∀δ > 0 and ∀h ∈ H, with probability at least
1− δ,

|l(h;S)− l(h;D)| ≤ ε(δ) = R(l ◦ H) + c

√
log(1/δ

2m
(4)

Proof. To apply Hoeffding’s inequality, we define

f(S) = max
h∈H

[l(h;D − l(h;S)].

First we show that f(S) is c
m bounded. For all hypothesis h ∈ H, we change one example in S → S ′.

l ∈ [0, c], thus |l(h,S ′)− l(h,S| ≤ c
m . l(h,D) remains the same, we have |f(S)− f(S;)| ≤ c

m .
Next we apply McDiarmid’s inequality,

Pr(f(S)− E[f(S)| ≥ ε) ≤ exp(−2mε2

c2
) = δ

f(s) ≤ E[f(S)] + c
√

log(1/δ)/2m

where E[f(S)] = ES{maxh∈H[l(h;D − l(h;S)]}. The expectation is taken over all possible samples.
Third, we show that E[f(S)] ≤ R(l ◦ H), where R(l ◦ H) is the Rademacher complexity. We begin with

the following tow lemmas.
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Lemma 2. maxi∈I E(Xi) ≤ E(maxi∈I Xi)

Proof. ∀j ∈ I, xj ≤ maxxi. ∴ E(Xj) ≤ E(maxiXi). It follows that maxj E(Xj) ≤ E(maxiXi).

Lemma 3. Let Z1 and Z2 be identical independent distributed, E[f(Z1, Z2] = E[f(Z2, Z1)]

Proof. E[f(Z1, Z2)] =
∫
z1,z2

f(Z1, Z2)P (z1, z2)dz1dz2 =
∫
z2,z1

f(Z2, Z1)P (z2, z1)dz2dz1 = E[f(Z2, Z1)].

Using lemma 2, we can show

ES [f(S)] = ES [max
h

[l(h;D)− l(h;S)]]

= ES [max
h

[ES′ − l(h;S)]] (Define S ′ = {(x′i, y′i}mi=1)

≤ ESES′ [max
h

(l(h;S ′)− l(h;S))] (Using Lemma2)

= ESES′ [max
h

[
1

m

m∑
i=1

(l′i − li)]] (5)

where li = l(h; (xi, yi)) and l′i = l(h; (x′i, y
′
i)).

Lemma 3 allows us to swap any pair of (li, l
′
i) we want. We can define ~σ = (σ1 . . . σm)T ∈ {±1}m, σi = 1

with probability 1/2 and σi = −1 with probability 1/2, for any i = 1, . . . ,m. We continues on inequality 5,

E[f(S)] ≤ ESES′ [max
h

[
1

m

m∑
i=1

(l′i − li)]]

= ESES′E~σ[max
h∈H

[
1

m

m∑
i=1

σi(l
′
i − li)]]

=
1

m
ESES′E~σ[max

h∈H
(

m∑
i=1

σil
′
i −

m∑
i=1

σili)]

≤ 1

m
ESES′E~σ[max

h∈H
(

m∑
i=1

σil
′
i) + max

h∈H
(

m∑
i=1

σili)]

=
1

m
ES′E~σ[max

h∈H
(

m∑
i=1

σil
′
i)] +

1

m
ESE~σ[max

h∈H
(

m∑
i=1

σili)]

=
2

m
ESE~σ[max

h∈H
(
m∑
i=1

σil(h; (xi, yi)))]

≡ Rm(l ◦ H) (6)

Remarks on Rademacher’s complexity:

• Since σi ∈ {±1}, we can rewrite the Rademacher’s complexity as:

Rm(l ◦ H) =
2

m
ESE~σ[max

h∈H
(

∑
i∈{i:σi=1}

li −
∑

i∈{i:σi=−1}

li)]

The ~σ partitioned the sample S into two disjoint sets. The Rademacher’s complexity estimates how
much difference between the total losses of two random-assigned disjoint sets can a hypothesis make.
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• We can rewrite ~l = {l1, . . . , lm}. Then the inner product < ~σ,~l > is a measurement of the correlation

between two vectors ~σ and ~l. The Rademacher’s complexity measures how well correlated the most-
correlated hypothesis is to a random labeling of points in S.

• The Rademacher’s complexity depends on the distribution D. We need to know D in order to compute
Rm(l ◦ H). This leads to the so-called empirical Rademacher’s complexity.

3 Empirical Rademacher Average

We define the empirical Rademacher average as:

f ′(S) =
2

m
E~σ[max

h∈H

m∑
i=1

σil(h; (xi, yi))] = R̂m(l ◦ H,S) (7)

Notice that f ′(S) satisfies the 2c
m bounded difference property. Since ES [f ′(S)] = Rm(l ◦ H), applying

McDiarmid’s inequality we have

Theorem 4. ∀δ ≥ 0, with probability at least 1− δ,

ES [f ′(S)]− f ′(S) ≤ 2c

√
log(1/δ)

2m
(8)

Define the set Ω = {S : f(S) > ES [f(S)] + c
√

1/δ
2m }, and Ω′ = {S : ES [f ′(S)] > f ′(S) + 2c

√
1/δ
2m }. From

Bole’s inequality we have P (Ω ∪ Ω′) ≤ P (Ω) + P (Ω′). We then have the following bound:

Theorem 5. ∀δ ≥ 0, with probability at least 1− 2δ,

∀h ∈ H : l(h;D)− l(;S) ≤ R̂m(l ◦ H,S) + 3c

√
1/δ

2m
(9)

3.1 Examples

Example 1 : Binary classification with 0–1 loss
In this example, y ∈ −1,+1, the 0–1 loss function l(h; (x, y)) = 1h(x)6=y. For a hypothesis class H

and a training sample S, assume that we have an algorithm returns the empirical risk minimizer hERM =
argminh∈H l(h;S). We would like to compute the upper bound of l(hERM ;D) using the uniform bound for
the infinite hypothesis class.

The empirical Rademacher average can be written as:

Rm(l ◦ H) =
2

m
E~σ max

h∈H

m∑
i=1

σil(h; (xi, yi))

=
2

m
E~σ max

h∈H
[

m∑
i=1

l(h; (xi, σiyi)) +

m∑
i=1

(σil(h; (xi, yi)− l(h; (xi, σiyi))]

=
2

m
E~σ max

h∈H
[

m∑
i=1

l(h; (xi, σiyi))−
∑

i:σi=−1
1] (10)

The above equation 10 can be verified by different combinations of li and σi: As shown in the above Table 1,
the difference [σl(h; (x, y))− l(h; (x, σy)] = 0 when σ = 1, and −1 when σ = −1.
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σ (h(x), y) σl(h; (x, y)) (h(x), σy) l(h; (x, σy) σl(h; (x, y))− l(h; (x, σy)
1 h(x) = y 0 h(x) = σy 0 0
1 h(x) 6= y 1 h(x) 6= σy 1 0
−1 h(x) 6= y −1 h(x) = σy 0 −1
−1 h(x) = y 0 h(x) 6= σy 1 −1

Continue on the above derivation 10, we have

Rm(l ◦ H) =
2

m
E~σ max

h∈H
[

m∑
i=1

l(h; (xi, σiyi))−
2

m

m

2

=
2

m
E~σ max

h∈H
[

m∑
i=1

[1− l(h; (xi,−σiyi))]− 1

= 1 +
2

m
E~σ max

h∈H
[

m∑
i=1

−l(h; (xi,−σiyi))]

= 1− 2

m
E~σ min

h∈H
[

m∑
i=1

l(h; (xi,−σiyi))]

= 1− 2E~σ min
h∈H

1

m
[

m∑
i=1

l(h; (xi, σi))] (11)

Again we define f ′′(~σ) = minh inH
1
m [

∑m
i=1 l(h; (xi, σi))], f

′′(~σ) satisfies 2
m bounded difference property.

Thus we have:

E[f ′′(~σ)] ≤ f ′′(~δ) + 2

√
log(1/δ)

2m
(12)

with prability at least 1− δ.

Corollary 6. ∀δ ≥ 0, with probability at least 1− 3δ,

∀h ∈ H, l(h;D) ≤ l(h;S) + (1− 2 min
h∈H

1

m

m∑
i=1

l(h; (xi, σi)) + 5

√
log(1/δ)

2m
(13)

If some hypothesis h ∈ H manges to “explain” the random labels such that minh∈H
1
m

∑m
i=1 l(h; (xi, σi) =

0, then the complexity for H would reach the maximum. A hypothesis can be considered a “good” hypothesis
if l(h; (xi, σi)) = 0 with probability 0.5, the expected loss with respect to random labels is just 0.5.
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